메뉴 건너뛰기




Volumn , Issue , 2017, Pages 1-290

Introduction to Functional Data Analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85133036478     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781315117416     Document Type: Book
Times cited : (441)

References (117)
  • 3
    • 85079148602 scopus 로고    scopus 로고
    • Tests for separability in nonparametric covariance operators of random surfaces
    • Aston, J., Pigoli, D. and Tavakoli, S. (2016). Tests for separability in nonparametric covariance operators of random surfaces. The Annals of Applied Statistics, 6, 1906–1948.
    • (2016) The Annals of Applied Statistics , vol.6 , pp. 1906-1948
    • Aston, J.1    Pigoli, D.2    Tavakoli, S.3
  • 9
    • 85012015316 scopus 로고    scopus 로고
    • Prospective life tables
    • (ed. A. Charpentier.), The R Series, chapter 8, pp.,. Chapman & Hall/CRC
    • Booth, H., Hyndman, R. J. and Tickle, L. (2014). Prospective life tables. In Computational Actuarial Science with R (ed. A. Charpentier.), The R Series, chapter 8, pp. 323–348. Chapman & Hall/CRC.
    • (2014) In Computational Actuarial Science with R , pp. 323-348
    • Booth, H.1    Hyndman, R.J.2    Tickle, L.3
  • 23
    • 84892512066 scopus 로고    scopus 로고
    • A partial overview of the theory of statistics with functional data
    • Cuevas, Antonio (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1–23.
    • (2014) Journal of Statistical Planning and Inference , vol.147 , pp. 1-23
    • Cuevas, A.1
  • 26
    • 77649330804 scopus 로고    scopus 로고
    • Defining probability density function for a distribution of random functions
    • Delaigle, A. and Hall, P. (2010). Defining probability density function for a distribution of random functions. The Annals of Statistics, 38, 1171–1193.
    • (2010) The Annals of Statistics , vol.38 , pp. 1171-1193
    • Delaigle, A.1    Hall, P.2
  • 28
    • 77952396887 scopus 로고    scopus 로고
    • Statistics for spatial functional data: Some recent contributions
    • Delicado, P., Giraldo, R., Comas, C. and Mateu, J. (2010). Statistics for spatial functional data: some recent contributions. Environmetrics, 21, 224–239.
    • (2010) Environmetrics , vol.21 , pp. 224-239
    • Delicado, P.1    Giraldo, R.2    Comas, C.3    Mateu, J.4
  • 29
    • 85133033498 scopus 로고    scopus 로고
    • Adapted variational bayes for functional data registration, smoothing, and prediction
    • Earls, Cecilia and Hooker, Giles (2016). Adapted variational bayes for functional data registration, smoothing, and prediction. Bayesian Analysis.
    • (2016) Bayesian Analysis
    • Earls, C.1    Hooker, G.2
  • 30
    • 84956704476 scopus 로고    scopus 로고
    • Spatial regression models over two-dimensional manifolds
    • Ettinger, B., Perotto, S. and Sangalli, L. (2016). Spatial regression models over two-dimensional manifolds. Biometrika, 103, 71–88.
    • (2016) Biometrika , vol.103 , pp. 71-88
    • Ettinger, B.1    Perotto, S.2    Sangalli, L.3
  • 32
    • 0031197999 scopus 로고    scopus 로고
    • Regression analysis for a functional response
    • Faraway, J. J. (1997). Regression analysis for a functional response. Techno-metrics, 39, 254–261.
    • (1997) Techno-Metrics , vol.39 , pp. 254-261
    • Faraway, J.J.1
  • 44
    • 84888344537 scopus 로고    scopus 로고
    • Estimator selection and combination in scalar–on–function regression
    • Goldsmith, J. and Scheipl, F. (2014). Estimator selection and combination in scalar–on–function regression. Computational Statistics and Data Analysis, 70, 362–372.
    • (2014) Computational Statistics and Data Analysis , vol.70 , pp. 362-372
    • Goldsmith, J.1    Scheipl, F.2
  • 45
    • 84941366974 scopus 로고    scopus 로고
    • Classification problems based on regression models for multidimensional functional data
    • Górecki, T., Krzyśko, M. and Wolyński, W. (2015). Classification problems based on regression models for multidimensional functional data. Statistics in Transition, 16, 97–110.
    • (2015) Statistics in Transition , vol.16 , pp. 97-110
    • Górecki, T.1    Krzyśko, M.2    Wolyński, W.3
  • 46
    • 84867203308 scopus 로고    scopus 로고
    • Testing the equality of mean functions of spatially distributed curves
    • Gromenko, O. and Kokoszka, P. (2012). Testing the equality of mean functions of spatially distributed curves. Journal of the Royal Statistical Society (C), 61, 715–731.
    • (2012) Journal of the Royal Statistical Society (C) , vol.61 , pp. 715-731
    • Gromenko, O.1    Kokoszka, P.2
  • 47
    • 84870067120 scopus 로고    scopus 로고
    • Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination
    • Gromenko, O. and Kokoszka, P. (2013). Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination. Computational Statistics and Data Analysis, 59, 82–94.
    • (2013) Computational Statistics and Data Analysis , vol.59 , pp. 82-94
    • Gromenko, O.1    Kokoszka, P.2
  • 52
    • 0003410290 scopus 로고
    • Princeton University Press, Princeton, NJ
    • Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton, NJ.
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 56
    • 84901348303 scopus 로고    scopus 로고
    • Testing stationarity of functional time series
    • Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179, 66–82.
    • (2014) Journal of Econometrics , vol.179 , pp. 66-82
    • Horváth, L.1    Kokoszka, P.2    Rice, G.3
  • 59
    • 49349085886 scopus 로고    scopus 로고
    • Stochastic population forecasts using functional data models for mortality, fertility and migration
    • Hyndman, R. J. and Booth, H. (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration. International Journal of Forecasting, 24, 323–342.
    • (2008) International Journal of Forecasting , vol.24 , pp. 323-342
    • Hyndman, R.J.1    Booth, H.2
  • 61
    • 33750436765 scopus 로고    scopus 로고
    • Robust forecasting of mortality and fertility rates: A functional data approach
    • Hyndman, R. J. and Ullah, S. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics and Data Analysis, 51, 4942–4956.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 4942-4956
    • Hyndman, R.J.1    Ullah, S.2
  • 66
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparcity for principal components analysis in high dimensions
    • Johnstone, I. M. and Lu, A. Y. (2009). On consistency and sparcity for principal components analysis in high dimensions. Journal of the Americal Statistical Association, 104, 682–693.
    • (2009) Journal of the Americal Statistical Association , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 70
    • 84873382257 scopus 로고    scopus 로고
    • Asymptotic normality of the principal components of functional time series
    • Kokoszka, P. and Reimherr, M. (2013). Asymptotic normality of the principal components of functional time series. Stochastic Processes and their Applications, 123, 1546–1562.
    • (2013) Stochastic Processes and Their Applications , vol.123 , pp. 1546-1562
    • Kokoszka, P.1    Reimherr, M.2
  • 71
    • 84958524994 scopus 로고    scopus 로고
    • KPSS test for functional time series
    • Kokoszka, P. and Young, G. (2016). KPSS test for functional time series. Statistics, 50, 957–973.
    • (2016) Statistics , vol.50 , pp. 957-973
    • Kokoszka, P.1    Young, G.2
  • 72
    • 84937730780 scopus 로고    scopus 로고
    • Components and completion of partially observed functional data
    • Kraus, D. (2015). Components and completion of partially observed functional data. Journal of the Royal Statistical Society (B), 77, 1369–7412.
    • (2015) Journal of the Royal Statistical Society (B) , vol.77 , pp. 1369-7412
    • Kraus, D.1
  • 75
    • 0033164054 scopus 로고    scopus 로고
    • Approximation, metric entropy and small ball estimates for Gaussian measures
    • Li, W. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. The Annals of Probability, 27, 1556–1578.
    • (1999) The Annals of Probability , vol.27 , pp. 1556-1578
    • Li, W.1    Linde, W.2
  • 76
    • 84885040095 scopus 로고    scopus 로고
    • Modeling and forecasting electricity prices: A functional data perspective
    • Liebl, D. (2013). Modeling and forecasting electricity prices: A functional data perspective. The Annals of Applied Statistics, 7, 1562–1592.
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 1562-1592
    • Liebl, D.1
  • 79
    • 21044433442 scopus 로고    scopus 로고
    • The likelihood ratio test for a separable covariance matrix
    • Lu, N. and Zimmerman, D. (2005). The likelihood ratio test for a separable covariance matrix. Statistics & Probability Letters, 73, 449–457.
    • (2005) Statistics & Probability Letters , vol.73 , pp. 449-457
    • Lu, N.1    Zimmerman, D.2
  • 80
    • 0003843310 scopus 로고
    • Randomization, and Monte Carlo Methods in Biology
    • Manly, B. F. J. (1991). Randomization, and Monte Carlo Methods in Biology. Chapman and Hall.
    • (1991) Chapman and Hall
    • Manly, B.F.J.1
  • 84
    • 84884912685 scopus 로고    scopus 로고
    • A universal kriging predictor for spatially dependent functional data of a hilbert space
    • Menafoglio, A., Secchi, P. and Rosa, M. D. (2013). A universal kriging predictor for spatially dependent functional data of a hilbert space. Electronic Journal of Statistics, 7, 2209–2240.
    • (2013) Electronic Journal of Statistics , vol.7 , pp. 2209-2240
    • Menafoglio, A.1    Secchi, P.2    Rosa, M.D.3
  • 87
    • 84885037860 scopus 로고    scopus 로고
    • Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series
    • Panaretos, V. M. and Tavakoli, S. (2013a). Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series. Stochastic Processes and their Applications, 123, 2779–2807.
    • (2013) Stochastic Processes and Their Applications , vol.123 , pp. 2779-2807
    • Panaretos, V.M.1    Tavakoli, S.2
  • 88
    • 84879130814 scopus 로고    scopus 로고
    • Fourier analysis of stationary time series in function space
    • Panaretos, V. M. and Tavakoli, S. (2013b). Fourier analysis of stationary time series in function space. The Annals of Statistics, 41, 568–603.
    • (2013) The Annals of Statistics , vol.41 , pp. 568-603
    • Panaretos, V.M.1    Tavakoli, S.2
  • 95
    • 0001048319 scopus 로고
    • A greenhouse effect in the ionosphere?
    • Rishbeth, H. (1990). A greenhouse effect in the ionosphere? Planet. Space Sci., 38, 945–948.
    • (1990) Planet. Space Sci. , vol.38 , pp. 945-948
    • Rishbeth, H.1
  • 96
    • 0024896996 scopus 로고
    • How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermo-sphere?
    • Roble, R. G. and Dickinson, R. E. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermo-sphere? Geophys. Res. Lett., 16, 1441–1444.
    • (1989) Geophys. Res. Lett. , vol.16 , pp. 1441-1444
    • Roble, R.G.1    Dickinson, R.E.2
  • 98
    • 0004116414 scopus 로고
    • Real and Complex Analysis
    • McGraw-Hill, Singapore
    • Rudin, W. (1987). Real and Complex Analysis, International edn. McGraw-Hill, Singapore.
    • (1987) International Edn
    • Rudin, W.1
  • 103
    • 84883231216 scopus 로고    scopus 로고
    • ftsa: An R package for analyzing functional time series
    • Shang, H. L. (2013). ftsa: An R package for analyzing functional time series. The R Journal, 5, 64–72.
    • (2013) The R Journal , vol.5 , pp. 64-72
    • Shang, H.L.1
  • 104
    • 85032821969 scopus 로고    scopus 로고
    • Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration
    • Shang, H. L. (2017). Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration. Econometrics and Statistics; Forthcoming.
    • (2017) Econometrics and Statistics; Forthcoming
    • Shang, H.L.1
  • 117
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • Yao, F., Müller, H-G. and Wang, J-L. (2005b). Functional linear regression analysis for longitudinal data. The Annals of Statistics, 33, 2873–2903.
    • (2005) The Annals of Statistics , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.