-
2
-
-
33947180792
-
Stochastic learning
-
Olivier Bousquet and Ulrike von Luxburg, editors, pages Springer Verlag, Berlin
-
Léon Bottou. 2004. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, editors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pages 146-168. Springer Verlag, Berlin.
-
(2004)
Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI
, vol.3176
, pp. 146-168
-
-
Bottou, Léon1
-
7
-
-
9444278508
-
Performance guarantees for regularized maximum entropy density estimation
-
John Shawe-Taylor and Yoram Singer, editors, pages Springer
-
Miroslav Dudík, Steven J. Phillips, and Robert E. Schapire. 2004. Performance guarantees for regularized maximum entropy density estimation. In John Shawe-Taylor and Yoram Singer, editors, Proceedings of the 17th annual Conference on Learning Theory, volume 3120 of Lecture Notes in Computer Science, pages 472-486. Springer.
-
(2004)
Proceedings of the 17th annual Conference on Learning Theory, volume 3120 of Lecture Notes in Computer Science
, pp. 472-486
-
-
Dudík, Miroslav1
Phillips, Steven J.2
Schapire, Robert E.3
-
8
-
-
72449211489
-
Efficient, feature-based, conditional random field parsing
-
Columbus, Ohio
-
Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. 2008. Efficient, feature-based, conditional random field parsing. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 959-967, Columbus, Ohio.
-
(2008)
Proceedings of the Annual Meeting of the Association for Computational Linguistics
, pp. 959-967
-
-
Finkel, Jenny Rose1
Kleeman, Alex2
Manning, Christopher D.3
-
10
-
-
84860542469
-
A comparative study of parameter estimation methods for statistical natural language processing
-
Prague, Czech republic
-
Jianfeng Gao, Galen Andrew, Mark Johnson, and Kristina Toutanova. 2007. A comparative study of parameter estimation methods for statistical natural language processing. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 824-831, Prague, Czech republic.
-
(2007)
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics
, pp. 824-831
-
-
Gao, Jianfeng1
Andrew, Galen2
Johnson, Mark3
Toutanova, Kristina4
-
11
-
-
84859898897
-
Efficient inference of crfs for large-scale natural language data
-
Suntec, Singapore
-
Minwoo Jeong, Chin-Yew Lin, and Gary Geunbae Lee. 2009. Efficient inference of crfs for large-scale natural language data. In Proceedings of the Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing, pages 281-284, Suntec, Singapore.
-
(2009)
Proceedings of the Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing
, pp. 281-284
-
-
Jeong, Minwoo1
Lin, Chin-Yew2
Lee, Gary Geunbae3
-
14
-
-
0142192295
-
Conditional random fields: probabilistic models for segmenting and labeling sequence data
-
Morgan Kaufmann, San Francisco, CA
-
John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the International Conference on Machine Learning, pages 282-289. Morgan Kaufmann, San Francisco, CA.
-
(2001)
Proceedings of the International Conference on Machine Learning
, pp. 282-289
-
-
Lafferty, John1
McCallum, Andrew2
Pereira, Fernando3
-
16
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45:503-528.
-
(1989)
Mathematical Programming
, vol.45
, pp. 503-528
-
-
Liu, Dong C.1
Nocedal, Jorge2
-
17
-
-
80052652249
-
Efficient large-scale distributed training of conditional maximum entropy models
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A.Culotta, editors, pages
-
Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and Dan Walker. 2009. Efficient large-scale distributed training of conditional maximum entropy models. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A.Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1231-1239.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1231-1239
-
-
Mann, Gideon1
McDonald, Ryan2
Mohri, Mehryar3
Silberman, Nathan4
Walker, Dan5
-
21
-
-
33947697927
-
Sparse forward-backward using minimum divergence beams for fast training of conditional random fields
-
Toulouse, France
-
Chris Pal, Charles Sutton, and Andrew McCallum. 2006. Sparse forward-backward using minimum divergence beams for fast training of conditional random fields. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France.
-
(2006)
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
-
-
Pal, Chris1
Sutton, Charles2
McCallum, Andrew3
-
22
-
-
1942418470
-
Grafting: Fast, incremental feature selection by gradient descent in function space
-
Simon Perkins, Kevin Lacker, and James Theiler. 2003. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3:1333-1356.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1333-1356
-
-
Perkins, Simon1
Lacker, Kevin2
Theiler, James3
-
24
-
-
71149101799
-
Sparse higher order conditional random fields for improved sequence labeling
-
Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, and Lide Wu. 2009. Sparse higher order conditional random fields for improved sequence labeling. In Proceedings of the Annual International Conference on Machine Learning, pages 849-856.
-
(2009)
Proceedings of the Annual International Conference on Machine Learning
, pp. 849-856
-
-
Qian, Xian1
Jiang, Xiaoqian2
Zhang, Qi3
Huang, Xuanjing4
Wu, Lide5
-
25
-
-
85117181888
-
Incremental feature selection and l1 regularization for relaxed maximum-entropy modeling
-
Dekang Lin and Dekai Wu, editors, pages Barcelona, Spain, July
-
Stefan Riezler and Alexander Vasserman. 2004. Incremental feature selection and l1 regularization for relaxed maximum-entropy modeling. In Dekang Lin and Dekai Wu, editors, Proceedings of the conference on Empirical Methods in Natural Language Processing, pages 174-181, Barcelona, Spain, July.
-
(2004)
Proceedings of the conference on Empirical Methods in Natural Language Processing
, pp. 174-181
-
-
Riezler, Stefan1
Vasserman, Alexander2
-
28
-
-
84860520429
-
Guided learning for bidirectional sequence classification
-
Prague, Czech Republic
-
Libin Shen, Giorgio Satta, and Aravind Joshi. 2007. Guided learning for bidirectional sequence classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 760-767, Prague, Czech Republic.
-
(2007)
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics
, pp. 760-767
-
-
Shen, Libin1
Satta, Giorgio2
Joshi, Aravind3
-
30
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
Lise Getoor and Ben Taskar, editors, Cambridge, MA. The MIT Press
-
Charles Sutton and Andrew McCallum. 2006. An introduction to conditional random fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning, Cambridge, MA. The MIT Press.
-
(2006)
Introduction to Statistical Relational Learning
-
-
Sutton, Charles1
McCallum, Andrew2
-
32
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. J.R.Statist.Soc.B, 58(1):267-288.
-
(1996)
J.R.Statist.Soc.B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, Robert1
-
34
-
-
80052416457
-
Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty
-
Suntec, Singapore
-
Yoshimasa Tsuruoka, Jun'ichi Tsujii, and Sophia Ananiadou. 2009. Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty. In Proceedings of the Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing, pages 477-485, Suntec, Singapore.
-
(2009)
Proceedings of the Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing
, pp. 477-485
-
-
Tsuruoka, Yoshimasa1
Tsujii, Jun'ichi2
Ananiadou, Sophia3
-
35
-
-
34250731290
-
Accelerated training of conditional random fields with stochastic gradient methods
-
ACM Press, New York, NY, USA
-
S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark Schmidt, and Kevin Murphy. 2006. Accelerated training of conditional random fields with stochastic gradient methods. In Proceedings of the 23th International Conference on Machine Learning, pages 969-976. ACM Press, New York, NY, USA.
-
(2006)
Proceedings of the 23th International Conference on Machine Learning
, pp. 969-976
-
-
Vishwanathan, S. V. N.1
Schraudolph, Nicol N.2
Schmidt, Mark3
Murphy, Kevin4
-
36
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Hui Zhou and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. J. Royal. Stat. Soc. B., 67(2):301-320.
-
(2005)
J. Royal. Stat. Soc. B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zhou, Hui1
Hastie, Trevor2
|