메뉴 건너뛰기




Volumn , Issue , 2004, Pages 49-58

Clustering time series from ARMA models with clipped data

Author keywords

ARMA; Clustering; Time series

Indexed keywords

ALGORITHMS; DATA ACQUISITION; DATA MINING; MATHEMATICAL MODELS; REGRESSION ANALYSIS; ROBOTICS; SIGNAL PROCESSING; SPEECH RECOGNITION; THEORY;

EID: 12244286336     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1014052.1014061     Document Type: Conference Paper
Times cited : (69)

References (37)
  • 1
    • 21144438166 scopus 로고
    • Likelihood of a model and information criteria
    • H. Akaike. Likelihood of a model and information criteria. Journal of Econometrics, 16:3-14, 1981.
    • (1981) Journal of Econometrics , vol.16 , pp. 3-14
    • Akaike, H.1
  • 2
    • 12244294304 scopus 로고    scopus 로고
    • Clustering time series from ARMA models with clipped data
    • School of Computing Sciences, University of East Anglia
    • A. J. Bagnall and G. Janacek. Clustering time series from ARMA models with clipped data. Technical Report CMP-C04-01, School of Computing Sciences, University of East Anglia, 2004.
    • (2004) Technical Report CMP-C04-01
    • Bagnall, A.J.1    Janacek, G.2
  • 5
    • 0030815057 scopus 로고    scopus 로고
    • Identification of cyclone-track regimes in the north atlantic
    • R. Blender, K. Fraedrich, and F. Lunkeit. Identification of cyclone-track regimes in the north atlantic. Quart J. Royal Meteor. Soc., (123):727-741, 1997.
    • (1997) Quart J. Royal Meteor. Soc. , Issue.123 , pp. 727-741
    • Blender, R.1    Fraedrich, K.2    Lunkeit, F.3
  • 10
    • 0030144761 scopus 로고    scopus 로고
    • Algorithm for clustering continuous density HMM by recognition error
    • E. Dermatas and G. Kokkinakis. Algorithm for clustering continuous density HMM by recognition error. IEEE Tr. On Speech and Audio Processing, 4(3):231-234, 1996.
    • (1996) IEEE Tr. on Speech and Audio Processing , vol.4 , Issue.3 , pp. 231-234
    • Dermatas, E.1    Kokkinakis, G.2
  • 11
    • 1842733200 scopus 로고    scopus 로고
    • Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification
    • R. F. Galan, S. Sachse, G.G. Galizia and A. V.M. Herz. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Computation, 16(5):999-1012, 2004.
    • (2004) Neural Computation , vol.16 , Issue.5 , pp. 999-1012
    • Galan, R.F.1    Sachse, S.2    Galizia, G.G.3    Herz, A.V.M.4
  • 13
    • 0003857441 scopus 로고    scopus 로고
    • chapter 3. Brain state identification and forecasting of acute pathology using unsupervised fuzzy clustering of EEC temporal patterns. CRC Press
    • A. B. Geva and D. H. Kerem. Fuzzy and Neuro-Fuzzy Systems in Medicine, chapter 3. Brain state identification and forecasting of acute pathology using unsupervised fuzzy clustering of EEC temporal patterns. CRC Press, 1998.
    • (1998) Fuzzy and Neuro-Fuzzy Systems in Medicine
    • Geva, A.B.1    Kerem, D.H.2
  • 14
    • 12244302702 scopus 로고
    • A direct representation for the large-sample maximum likelihood estimator of a gaussian autoregressive-moving average process
    • E. J. Godolphin. A direct representation for the large-sample maximum likelihood estimator of a gaussian autoregressive-moving average process. Biometrika, 71(2):281-289, 1984.
    • (1984) Biometrika , vol.71 , Issue.2 , pp. 281-289
    • Godolphin, E.J.1
  • 21
    • 11144262354 scopus 로고
    • Estimation of the parameters in stationary autoregressive processes after hard limiting
    • B. Kedem. Estimation of the parameters in stationary autoregressive processes after hard limiting. Journal of the American Statistical Association, 75:146-153, 1980.
    • (1980) Journal of the American Statistical Association , vol.75 , pp. 146-153
    • Kedem, B.1
  • 22
    • 12244295960 scopus 로고
    • On goodness of fit of time series models: An application of higher order crossings
    • B. Kedem and E. Slud. On goodness of fit of time series models: An application of higher order crossings. Biometrika, 68:551-556, 1991.
    • (1991) Biometrika , vol.68 , pp. 551-556
    • Kedem, B.1    Slud, E.2
  • 24
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4):349-371, 2003.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 25
    • 0002182408 scopus 로고
    • Cross-sectional approach for clustering time varying data
    • K. Kosmelj and V. Batagelj. Cross-sectional approach for clustering time varying data. Journal of Classification, 7:99-109, 1990.
    • (1990) Journal of Classification , vol.7 , pp. 99-109
    • Kosmelj, K.1    Batagelj, V.2
  • 29
    • 2642567171 scopus 로고    scopus 로고
    • Using dynamic time warping to bootstrap HMM-based clustering of time series
    • T. Oates, L. Firoiu, and P. R. Cohen. Using dynamic time warping to bootstrap HMM-based clustering of time series. Lecture Notes in Computer Science, 1828:35-52, 2001.
    • (2001) Lecture Notes in Computer Science , vol.1828 , pp. 35-52
    • Oates, T.1    Firoiu, L.2    Cohen, P.R.3
  • 30
    • 12244310306 scopus 로고    scopus 로고
    • Localised structures in the temporal evolution of asset prices
    • Santa Fe Conference
    • P. Ormerod and C. Mounfield. Localised structures in the temporal evolution of asset prices. In New Approaches to Financial Economics. Santa Fe Conference, 2000.
    • (2000) New Approaches to Financial Economics
    • Ormerod, P.1    Mounfield, C.2
  • 31
    • 0002648792 scopus 로고    scopus 로고
    • The schwarz criterion and related methods for normal linear models
    • D. K. Pauler. The Schwarz criterion and related methods for normal linear models. Biometrika,85(1):13-27, 1998.
    • (1998) Biometrika , vol.85 , Issue.1 , pp. 13-27
    • Pauler, D.K.1
  • 32
    • 84981470151 scopus 로고
    • A distance measure for classifying ARIMA models
    • D. Piccolo. A distance measure for classifying ARIMA models. Journal of Time Series Analysis, 11(2):153-164, 1990.
    • (1990) Journal of Time Series Analysis , vol.11 , Issue.2 , pp. 153-164
    • Piccolo, D.1
  • 34
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden markov models
    • M. C. Mozer, M. I. Jordan, and T. Petsche, editors, The MIT Press
    • P. Smyth. Clustering sequences with hidden markov models. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page 648. The MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 648
    • Smyth, P.1
  • 35
    • 0002107373 scopus 로고
    • Cluster of time series models: An example
    • P. Tong and H. Dabas. Cluster of time series models: An example. Journal of Applied Statistics, 17:187-198, 1990.
    • (1990) Journal of Applied Statistics , vol.17 , pp. 187-198
    • Tong, P.1    Dabas, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.