-
1
-
-
0027333443
-
Chaos in Ecology: Is Mother Nature a Strange Attractor?
-
[CrossRef]
-
Hastings, A.; Hom, C.L.; Ellner, S.; Turchin, P.; Godfray, H.C.J. Chaos in Ecology: Is Mother Nature a Strange Attractor? Annu. Rev. Ecol. Syst. 1993, 24, 1–33. [CrossRef]
-
(1993)
Annu. Rev. Ecol. Syst
, vol.24
, pp. 1-33
-
-
Hastings, A.1
Hom, C.L.2
Ellner, S.3
Turchin, P.4
Godfray, H.C.J.5
-
2
-
-
35848954313
-
A Simple Guide to Chaos and Complexity
-
[CrossRef] [PubMed]
-
Rickles, D.; Hawe, P.; Shiell, A. A Simple Guide to Chaos and Complexity. J. Epidemiol. Commun. Health 2007, 61, 933–937. [CrossRef] [PubMed]
-
(2007)
J. Epidemiol. Commun. Health
, vol.61
, pp. 933-937
-
-
Rickles, D.1
Hawe, P.2
Shiell, A.3
-
3
-
-
84866950574
-
Manifold Learning Approach for Chaos in the Dripping Faucet
-
[CrossRef] [PubMed]
-
Suetani, H.; Soejima, K.; Matsuoka, R.; Parlitz, U.; Hata, H. Manifold Learning Approach for Chaos in the Dripping Faucet. Phys. Rev. E 2012, 86, 036209. [CrossRef] [PubMed]
-
(2012)
Phys. Rev. E
, vol.86
, pp. 036209
-
-
Suetani, H.1
Soejima, K.2
Matsuoka, R.3
Parlitz, U.4
Hata, H.5
-
4
-
-
80052375569
-
A New Iterative Approach to Fractal Models
-
[CrossRef]
-
Singh, S.L.; Mishra, S.N.; Sinkala, W. A New Iterative Approach to Fractal Models. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 521–529. [CrossRef]
-
(2012)
Commun. Nonlinear Sci. Numer. Simul
, vol.17
, pp. 521-529
-
-
Singh, S.L.1
Mishra, S.N.2
Sinkala, W.3
-
5
-
-
84883809867
-
Poincaré Plot Indexes of Heart Rate Variability: Relationships with Other Nonlinear Variables
-
[CrossRef] [PubMed]
-
Hoshi, R.A.; Pastre, C.M.; Vanderlei, L.C.M.; Godoy, M.F. Poincaré Plot Indexes of Heart Rate Variability: Relationships with Other Nonlinear Variables. Auton. Neurosci. 2013, 177, 271–274. [CrossRef] [PubMed]
-
(2013)
Auton. Neurosci
, vol.177
, pp. 271-274
-
-
Hoshi, R.A.1
Pastre, C.M.2
Vanderlei, L.C.M.3
Godoy, M.F.4
-
6
-
-
85095303942
-
Initiation of Ventricular Fibrillation by a Single Ectopic Beat in Three Dimensional Numerical Models of Ischemic Heart Disease: Abrupt Transition to Chaos
-
[CrossRef]
-
Babbs, C.F. Initiation of Ventricular Fibrillation by a Single Ectopic Beat in Three Dimensional Numerical Models of Ischemic Heart Disease: Abrupt Transition to Chaos. J. Clin. Exp. Cardiol. 2014, 5, 2–11. [CrossRef]
-
(2014)
J. Clin. Exp. Cardiol
, vol.5
, pp. 2-11
-
-
Babbs, C.F.1
-
7
-
-
67651100776
-
Introduction to Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic?
-
[CrossRef] [PubMed]
-
Glass, L. Introduction to Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic? Chaos 2009, 19, 028501. [CrossRef] [PubMed]
-
(2009)
Chaos
, vol.19
, pp. 028501
-
-
Glass, L.1
-
8
-
-
78649606183
-
Chaos Theory and Its Application in Modern Cryptography
-
Taiyuan, China, 22–24 October 2010
-
Hong, Z.; Dong, J. Chaos Theory and Its Application in Modern Cryptography. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; pp. 332–334.
-
Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010)
, pp. 332-334
-
-
Hong, Z.1
Dong, J.2
-
9
-
-
85039964079
-
Cryptography with Chaos
-
Athens, Greece, 12–15 June 2012
-
Makris, G.; Antoniou, I. Cryptography with Chaos. In Proceedings of the 5th Chaotic Modeling and Simulation International Conference, Athens, Greece, 12–15 June 2012; pp. 309–318.
-
Proceedings of the 5th Chaotic Modeling and Simulation International Conference
, pp. 309-318
-
-
Makris, G.1
Antoniou, I.2
-
10
-
-
0003614662
-
-
Psychology Press: New York, NY, USA
-
Guastello, S.J. Chaos, Catastrophe, and Human Affairs: Applications of Nonlinear Dynamics to Work, Organizations, and Social Evolution; Psychology Press: New York, NY, USA, 2013.
-
(2013)
Chaos, Catastrophe, and Human Affairs: Applications of Nonlinear Dynamics to Work, Organizations, and Social Evolution
-
-
Guastello, S.J.1
-
11
-
-
85059167728
-
From Individuals to Groups: The Aggregation of Votes and Chaotic Dynamics
-
Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA
-
Richards, D. From Individuals to Groups: The Aggregation of Votes and Chaotic Dynamics. In Chaos Theory in the Social Sciences; Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1996; pp. 89–116.
-
(1996)
Chaos Theory in the Social Sciences
, pp. 89-116
-
-
Richards, D.1
-
13
-
-
0000356817
-
Self-Organized Criticality and Urban Development
-
[CrossRef]
-
Batty, M.; Xie, Y. Self-Organized Criticality and Urban Development. Discret. Dyn. Nat. Soc. 1999, 3, 109–124. [CrossRef]
-
(1999)
Discret. Dyn. Nat. Soc
, vol.3
, pp. 109-124
-
-
Batty, M.1
Xie, Y.2
-
14
-
-
0033942438
-
When and Where is a City Fractal?
-
[CrossRef]
-
Benguigui, L.; Czamanski, D.; Marinov, M.; Portugali, Y. When and Where is a City Fractal? Environ. Plan. B 2000, 27, 507–519. [CrossRef]
-
(2000)
Environ. Plan. B
, vol.27
, pp. 507-519
-
-
Benguigui, L.1
Czamanski, D.2
Marinov, M.3
Portugali, Y.4
-
15
-
-
0036335994
-
Fractal Dimension and Fractal Growth of Urbanized Areas
-
[CrossRef]
-
Shen, G. Fractal Dimension and Fractal Growth of Urbanized Areas. Int. J. Geogr. Inf. Sci. 2002, 16, 419–437. [CrossRef]
-
(2002)
Int. J. Geogr. Inf. Sci
, vol.16
, pp. 419-437
-
-
Shen, G.1
-
16
-
-
34548534433
-
Scaling Laws and Indications of Self-Organized Criticality in Urban Systems
-
[CrossRef]
-
Chen, Y.; Zhou, Y. Scaling Laws and Indications of Self-Organized Criticality in Urban Systems. Chaos Solitons Fractals 2008, 35, 85–98. [CrossRef]
-
(2008)
Chaos Solitons Fractals
, vol.35
, pp. 85-98
-
-
Chen, Y.1
Zhou, Y.2
-
17
-
-
38649117916
-
Nonlinear Dynamics and Chaos in a Fractional-Order Financial System
-
[CrossRef]
-
Chen, W.C. Nonlinear Dynamics and Chaos in a Fractional-Order Financial System. Chaos Solitons Fractals 2008, 36, 1305–314. [CrossRef]
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 1305-1314
-
-
Chen, W.C.1
-
18
-
-
67349155616
-
Chaos in Economics and Finance
-
[CrossRef]
-
Guégan, D. Chaos in Economics and Finance. Annu. Rev. Control 2009, 33, 89–93. [CrossRef]
-
(2009)
Annu. Rev. Control
, vol.33
, pp. 89-93
-
-
Guégan, D.1
-
19
-
-
0003906808
-
-
2nd ed.; Springer Science & Business Media: New York, NY, USA
-
Puu, T. Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2013.
-
(2013)
Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics
-
-
Puu, T.1
-
20
-
-
85059139734
-
Chaos Theory and Rationality in Economics
-
Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA
-
Rosser, J.B. Chaos Theory and Rationality in Economics. In Chaos Theory in the Social Sciences; Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1996; pp. 199–213.
-
(1996)
Chaos Theory in the Social Sciences
, pp. 199-213
-
-
Rosser, J.B.1
-
21
-
-
33845696713
-
Economics on the Edge of Chaos: Some Pitfalls of Linearizing Complex Systems
-
[CrossRef]
-
Oxley, L.; George, D.A.R. Economics on the Edge of Chaos: Some Pitfalls of Linearizing Complex Systems. Environ. Model. Softw. 2007, 22, 580–589. [CrossRef]
-
(2007)
Environ. Model. Softw
, vol.22
, pp. 580-589
-
-
Oxley, L.1
George, D.A.R.2
-
22
-
-
70349980917
-
Can Chaos Theory Explain Complexity In Urban Fabric? Applications in Traditional Muslim Settlements
-
[CrossRef]
-
Hamouche, M.B. Can Chaos Theory Explain Complexity In Urban Fabric? Applications in Traditional Muslim Settlements. Nexus Netw. J. 2009, 11, 217–242. [CrossRef]
-
(2009)
Nexus Netw. J
, vol.11
, pp. 217-242
-
-
Hamouche, M.B.1
-
23
-
-
84881038165
-
The Fractal Analysis of Architecture: Calibrating the Box-Counting Method Using Scaling Coefficient and Grid Disposition Variables
-
[CrossRef]
-
Ostwald, M.J. The Fractal Analysis of Architecture: Calibrating the Box-Counting Method Using Scaling Coefficient and Grid Disposition Variables. Environ. Plan B 2013, 40, 644–663. [CrossRef]
-
(2013)
Environ. Plan B
, vol.40
, pp. 644-663
-
-
Ostwald, M.J.1
-
24
-
-
0025936716
-
Planning and Chaos Theory
-
[CrossRef]
-
Cartwright, T.J. Planning and Chaos Theory. J. Am. Plan. Assoc. 1991, 57, 44–56. [CrossRef]
-
(1991)
J. Am. Plan. Assoc
, vol.57
, pp. 44-56
-
-
Cartwright, T.J.1
-
26
-
-
84925271334
-
The Origins of Complexity Theory in Cities and Planning
-
Portugali, J., Meyer, H., Stolk, E., Tan, E., Eds.; Springer: Berlin, Germany
-
Batty, M.; Marshall, S. The Origins of Complexity Theory in Cities and Planning. In Complexity Theories of Cities Have Come of Age; Portugali, J., Meyer, H., Stolk, E., Tan, E., Eds.; Springer: Berlin, Germany, 2012; pp. 21–45.
-
(2012)
Complexity Theories of Cities Have Come of Age
, pp. 21-45
-
-
Batty, M.1
Marshall, S.2
-
28
-
-
84996190375
-
Dynamical System Visualization and Analysis via Performance Maps
-
[CrossRef]
-
Alpigini, J.J. Dynamical System Visualization and Analysis via Performance Maps. Inf. Vis. 2004, 3, 271–287. [CrossRef]
-
(2004)
Inf. Vis
, vol.3
, pp. 271-287
-
-
Alpigini, J.J.1
-
31
-
-
0000241853
-
Deterministic Nonperiodic Flow
-
[CrossRef]
-
Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
-
(1963)
J. Atmos. Sci
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
32
-
-
0017185443
-
Simple Mathematical Models with Very Complicated Dynamics
-
[CrossRef] [PubMed]
-
May, R.M. Simple Mathematical Models with Very Complicated Dynamics. Nature 1976, 261, 459–467. [CrossRef] [PubMed]
-
(1976)
Nature
, vol.261
, pp. 459-467
-
-
May, R.M.1
-
33
-
-
35949021230
-
Geometry from a Time Series
-
[CrossRef]
-
Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980, 45, 712–716. [CrossRef]
-
(1980)
Phys. Rev. Lett
, vol.45
, pp. 712-716
-
-
Packard, N.H.1
Crutchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
34
-
-
22944444400
-
Time Series Analysis
-
2nd ed.; Hand, D., Berthold, M., Eds.; Springer: Berlin, Germany
-
Bradley, E. Time Series Analysis. In Intelligent Data Analysis: An Introduction, 2nd ed.; Hand, D., Berthold, M., Eds.; Springer: Berlin, Germany, 2003.
-
(2003)
Intelligent Data Analysis: An Introduction
-
-
Bradley, E.1
-
35
-
-
84927732320
-
Nonlinear Time-Series Analysis Revisited
-
[CrossRef] [PubMed]
-
Bradley, E.; Kantz, H. Nonlinear Time-Series Analysis Revisited. Chaos 2015, 25, 097610. [CrossRef] [PubMed]
-
(2015)
Chaos
, vol.25
, pp. 097610
-
-
Bradley, E.1
Kantz, H.2
-
36
-
-
33646427717
-
Metaphors in Complexity Theory and Planning
-
[CrossRef]
-
Chettiparamb, A. Metaphors in Complexity Theory and Planning. Plan Theory 2006, 5, 71–91. [CrossRef]
-
(2006)
Plan Theory
, vol.5
, pp. 71-91
-
-
Chettiparamb, A.1
-
38
-
-
0034738985
-
The Lorenz Attractor Exists
-
[CrossRef] [PubMed]
-
Stewart, I. The Lorenz Attractor Exists. Nature 2000, 406, 948–949. [CrossRef] [PubMed]
-
(2000)
Nature
, vol.406
, pp. 948-949
-
-
Stewart, I.1
-
39
-
-
85020361339
-
-
(accessed on 1 September 2016)
-
Danforth, C.M. Chaos in an Atmosphere Hanging on a Wall. Available online: http://mpe2013.org/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/(accessed on 1 September 2016).
-
Chaos in an Atmosphere Hanging on a Wall
-
-
Danforth, C.M.1
-
41
-
-
0016394337
-
Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos
-
[CrossRef] [PubMed]
-
May, R.M. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos. Science 1974, 186, 645–647. [CrossRef] [PubMed]
-
(1974)
Science
, vol.186
, pp. 645-647
-
-
May, R.M.1
-
42
-
-
79959759804
-
Optimal Harvesting Policy for Stochastic Logistic Population Model
-
[CrossRef]
-
Li, W.; Wang, K.; Su, H. Optimal Harvesting Policy for Stochastic Logistic Population Model. Appl. Math. Comput. 2011, 218, 157–162. [CrossRef]
-
(2011)
Appl. Math. Comput
, vol.218
, pp. 157-162
-
-
Li, W.1
Wang, K.2
Su, H.3
-
43
-
-
63349088494
-
Chaotic Growth with the Logistic Model of P.F. Verhulst
-
Ausloos, M., Dirickx, M., Eds.; Springer: Berlin, Germany
-
Pastijn, H. Chaotic Growth with the Logistic Model of P.F. Verhulst. In The Logistic Map and the Route to Chaos; Ausloos, M., Dirickx, M., Eds.; Springer: Berlin, Germany, 2006; pp. 3–11.
-
(2006)
The Logistic Map and the Route to Chaos
, pp. 3-11
-
-
Pastijn, H.1
-
45
-
-
34250451946
-
On the Nature of Turbulence
-
[CrossRef]
-
Ruelle, D.; Takens, F. On the Nature of Turbulence. Commun. Math. Phys. 1971, 20, 167–192. [CrossRef]
-
(1971)
Commun. Math. Phys
, vol.20
, pp. 167-192
-
-
Ruelle, D.1
Takens, F.2
-
46
-
-
67650854000
-
Bifurcations and Strange Attractors
-
Shilnikov, L. Bifurcations and Strange Attractors. Proc. Int. Congr. Math. 2002, 3, 349–372.
-
(2002)
Proc. Int. Congr. Math
, vol.3
, pp. 349-372
-
-
Shilnikov, L.1
-
47
-
-
37049182192
-
Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics
-
[CrossRef] [PubMed]
-
Grebogi, C.; Ott, E.; Yorke, J.A. Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics. Science 1987, 238, 632–638. [CrossRef] [PubMed]
-
(1987)
Science
, vol.238
, pp. 632-638
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
49
-
-
84891517157
-
Discrete Fractional Logistic Map and Its Chaos
-
[CrossRef]
-
Wu, G.C.; Baleanu, D. Discrete Fractional Logistic Map and Its Chaos. Nonlinear Dyn. 2014, 75, 283–287. [CrossRef]
-
(2014)
Nonlinear Dyn
, vol.75
, pp. 283-287
-
-
Wu, G.C.1
Baleanu, D.2
-
50
-
-
0000100336
-
Period Three Implies Chaos
-
[CrossRef]
-
Li, T.Y.; Yorke, J.A. Period Three Implies Chaos. Am. Math. Mon. 1975, 82, 985–992. [CrossRef]
-
(1975)
Am. Math. Mon
, vol.82
, pp. 985-992
-
-
Li, T.Y.1
Yorke, J.A.2
-
51
-
-
0001816458
-
Quantitative Universality for a Class of Nonlinear Transformations
-
[CrossRef]
-
Feigenbaum, M.J. Quantitative Universality for a Class of Nonlinear Transformations. J. Stat. Phys. 1978, 19, 25–52. [CrossRef]
-
(1978)
J. Stat. Phys
, vol.19
, pp. 25-52
-
-
Feigenbaum, M.J.1
-
52
-
-
48749145356
-
Universal Behavior in Nonlinear Systems
-
[CrossRef]
-
Feigenbaum, M.J. Universal Behavior in Nonlinear Systems. Phys. Nonlinear Phenom. 1983, 7, 16–39. [CrossRef]
-
(1983)
Phys. Nonlinear Phenom
, vol.7
, pp. 16-39
-
-
Feigenbaum, M.J.1
-
53
-
-
0002591468
-
A Two-Dimensional Mapping with a Strange Attractor
-
[CrossRef]
-
Hénon, M. A Two-Dimensional Mapping with a Strange Attractor. Commun. Math. Phys. 1976, 50, 69–77. [CrossRef]
-
(1976)
Commun. Math. Phys
, vol.50
, pp. 69-77
-
-
Hénon, M.1
-
54
-
-
48749145669
-
The Dimension of Chaotic Attractors
-
[CrossRef]
-
Farmer, J.D.; Ott, E.; Yorke, J.A. The Dimension of Chaotic Attractors. Phys. Nonlinear Phenom. 1983, 7, 153–180. [CrossRef]
-
(1983)
Phys. Nonlinear Phenom
, vol.7
, pp. 153-180
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
55
-
-
33646981873
-
Characterization of Strange Attractors
-
[CrossRef]
-
Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346–349. [CrossRef]
-
(1983)
Phys. Rev. Lett
, vol.50
, pp. 346-349
-
-
Grassberger, P.1
Procaccia, I.2
-
56
-
-
5444244687
-
How Long Is the Coast of Britain?
-
[CrossRef] [PubMed]
-
Mandelbrot, B.B. How Long Is the Coast of Britain? Science 1967, 156, 636–638. [CrossRef] [PubMed]
-
(1967)
Science
, vol.156
, pp. 636-638
-
-
Mandelbrot, B.B.1
-
59
-
-
0342445412
-
Diamond Study Group. Fractal Correlation Properties of RR Interval Dynamics and Mortality in Patients with Depressed Left Ventricular Function after an Acute Myocardial Infarction
-
[CrossRef] [PubMed]
-
Huikuri, H.V.; Mäkikallio, T.H.; Peng, C.K.; Goldberger, A.L.; Hintze, U.; Møller, M. Diamond Study Group. Fractal Correlation Properties of RR Interval Dynamics and Mortality in Patients with Depressed Left Ventricular Function after an Acute Myocardial Infarction. Circulation 2000, 101, 47–53. [CrossRef] [PubMed]
-
(2000)
Circulation
, vol.101
, pp. 47-53
-
-
Huikuri, H.V.1
Mäkikallio, T.H.2
Peng, C.K.3
Goldberger, A.L.4
Hintze, U.5
Møller, M.6
-
60
-
-
0000779360
-
Detecting Strange Attractors in Turbulence
-
Rand, D., Young, L.S., Eds.; Springer: Berlin, Germany
-
Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence; Rand, D., Young, L.S., Eds.; Springer: Berlin, Germany, 1981; pp. 366–381.
-
(1981)
Dynamical Systems and Turbulence
, pp. 366-381
-
-
Takens, F.1
-
61
-
-
84975613293
-
Estimating Fractal Dimension
-
[CrossRef]
-
Theiler, J. Estimating Fractal Dimension. J. Opt. Soc. Am. A 1990, 7, 1055–1073. [CrossRef]
-
(1990)
J. Opt. Soc. Am. A
, vol.7
, pp. 1055-1073
-
-
Theiler, J.1
-
62
-
-
85070538805
-
A Study of Period Doubling in Logistic Map for Shift Parameter
-
[CrossRef]
-
Kekre, H.B.; Sarode, T.; Halarnkar, P.N. A Study of Period Doubling in Logistic Map for Shift Parameter. Int. J. Eng. Trends Technol. 2014, 13, 281–286. [CrossRef]
-
(2014)
Int. J. Eng. Trends Technol
, vol.13
, pp. 281-286
-
-
Kekre, H.B.1
Sarode, T.2
Halarnkar, P.N.3
-
63
-
-
0022928633
-
Computation of the Fractal Dimension of Topographic Surfaces Using the Triangular Prism Surface Area Method
-
[CrossRef]
-
Clarke, K.C. Computation of the Fractal Dimension of Topographic Surfaces Using the Triangular Prism Surface Area Method. Comput. Geosci. 1986, 12, 713–722. [CrossRef]
-
(1986)
Comput. Geosci
, vol.12
, pp. 713-722
-
-
Clarke, K.C.1
-
64
-
-
84929179953
-
The Many Facets of Chaos
-
[CrossRef]
-
Sander, E.; Yorke, J.A. The Many Facets of Chaos. Int. J. Bifurc. Chaos 2015, 25, 1530011. [CrossRef]
-
(2015)
Int. J. Bifurc. Chaos
, vol.25
, pp. 1530011
-
-
Sander, E.1
Yorke, J.A.2
-
65
-
-
84938629862
-
Classifying and Quantifying Basins of Attraction
-
[CrossRef] [PubMed]
-
Sprott, J.C.; Xiong, A. Classifying and Quantifying Basins of Attraction. Chaos 2015, 25, 083101. [CrossRef] [PubMed]
-
(2015)
Chaos
, vol.25
, pp. 083101
-
-
Sprott, J.C.1
Xiong, A.2
-
66
-
-
85059131692
-
Measuring Chaos Using the Lyapunov Exponent
-
Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA
-
Brown, T.A. Measuring Chaos Using the Lyapunov Exponent. In Chaos Theory in the Social Sciences; Kiel, L.D., Elliott, E., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1996; pp. 53–66.
-
(1996)
Chaos Theory in the Social Sciences
, pp. 53-66
-
-
Brown, T.A.1
-
67
-
-
0008494528
-
Determining Lyapunov Exponents from a Time Series
-
[CrossRef]
-
Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov Exponents from a Time Series. Phys. Nonlinear Phenom. 1985, 16, 285–317. [CrossRef]
-
(1985)
Phys. Nonlinear Phenom
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
68
-
-
77949424584
-
Lyapunov Exponents
-
Akay, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA
-
Dingwell, J.B. Lyapunov Exponents. In Wiley Encyclopedia of Biomedical Engineering; Akay, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006.
-
(2006)
Wiley Encyclopedia of Biomedical Engineering
-
-
Dingwell, J.B.1
-
70
-
-
84938315026
-
Defining Chaos
-
[CrossRef] [PubMed]
-
Hunt, B.R.; Ott, E. Defining Chaos. Chaos 2015, 25, 097618. [CrossRef] [PubMed]
-
(2015)
Chaos
, vol.25
, pp. 097618
-
-
Hunt, B.R.1
Ott, E.2
-
71
-
-
84878810963
-
The Problem of Spurious Lyapunov Exponents in Time Series Analysis and Its Solution by Covariant Lyapunov Vectors
-
[CrossRef]
-
Kantz, H.; Radons, G.; Yang, H. The Problem of Spurious Lyapunov Exponents in Time Series Analysis and Its Solution by Covariant Lyapunov Vectors. J. Phys. Math. Theor. 2013, 46, 254009. [CrossRef]
-
(2013)
J. Phys. Math. Theor
, vol.46
, pp. 254009
-
-
Kantz, H.1
Radons, G.2
Yang, H.3
|