-
2
-
-
0000759022
-
Long-term storage of water reservoirs
-
H. Hurst, "Long-term storage of water reservoirs," Trans. Am. Soc. Civ. Eng. 116, 509 (1951).
-
(1951)
Trans. Am. Soc. Civ. Eng.
, vol.116
, pp. 509
-
-
Hurst, H.1
-
3
-
-
34547856203
-
Mosaic organization of DNA nucleotides
-
C. Peng, S. Buldyrev, S. Havlin, M. Simons, H. Stanley, and A. Goldberger, "Mosaic organization of DNA nucleotides," Phys. Rev. E 49, 1685 (1994).10.1103/PhysRevE.49.1685
-
(1994)
Phys. Rev. E
, vol.49
, pp. 1685
-
-
Peng, C.1
Buldyrev, S.2
Havlin, S.3
Simons, M.4
Stanley, H.5
Goldberger, A.6
-
6
-
-
79953644543
-
Prediction and stability in classical mechanics
-
(University of California, Santa Cruz).
-
J. Crutchfield, "Prediction and stability in classical mechanics," senior undergraduate thesis (University of California, Santa Cruz, 1979).
-
(1979)
-
-
Crutchfield, J.1
-
7
-
-
35949021230
-
Geometry from a time series
-
N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, "Geometry from a time series," Phys. Rev. Lett. 45, 712 (1980).10.1103/PhysRevLett.45.712
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 712
-
-
Packard, N.1
Crutchfield, J.2
Farmer, J.3
Shaw, R.4
-
8
-
-
0000779360
-
Detecting strange attractors in fluid turbulence
-
(Springer, Berlin)
-
F. Takens, "Detecting strange attractors in fluid turbulence," in Dynamical Systems and Turbulence, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366-381.
-
(1981)
Dynamical Systems and Turbulence
, pp. 366-381
-
-
Takens, F.1
Rand, D.2
Young, L.-S.3
-
9
-
-
33751278790
-
Embedology
-
T. Sauer, J. Yorke, and M. Casdagli, "Embedology," J. Stat. Phys. 65, 579-616 (1991).10.1007/BF01053745
-
(1991)
J. Stat. Phys.
, vol.65
, pp. 579-616
-
-
Sauer, T.1
Yorke, J.2
Casdagli, M.3
-
10
-
-
0000810560
-
Practical implementation of nonlinear time series methods: The TISEAN package
-
R. Hegger, H. Kantz, and T. Schreiber, "Practical implementation of nonlinear time series methods: The TISEAN package," Chaos 9, 413-435 (1999).10.1063/1.166424
-
(1999)
Chaos
, vol.9
, pp. 413-435
-
-
Hegger, R.1
Kantz, H.2
Schreiber, T.3
-
11
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
A. Fraser and H. Swinney, "Independent coordinates for strange attractors from mutual information," Phys. Rev. A 33, 1134-1140 (1986).10.1103/PhysRevA.33.1134
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1134-1140
-
-
Fraser, A.1
Swinney, H.2
-
12
-
-
30244464950
-
Proper choice of the time delay for the analysis of chaotic time series
-
W. Liebert and H. Schuster, "Proper choice of the time delay for the analysis of chaotic time series," Phys. Lett. A 142, 107-111 (1989).10.1016/0375-9601(89)90169-2
-
(1989)
Phys. Lett. A
, vol.142
, pp. 107-111
-
-
Liebert, W.1
Schuster, H.2
-
13
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
P. Grassberger and I. Procaccia, "Measuring the strangeness of strange attractors," Physica D 9, 189-208 (1983).10.1016/0167-2789(83)90298-1
-
(1983)
Physica D
, vol.9
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
14
-
-
44949273552
-
State space reconstruction in the presence of noise
-
M. Casdagli, S. Eubank, J. Farmer, and J. Gibson, "State space reconstruction in the presence of noise," Physica D 51, 52-98 (1991).10.1016/0167-2789(91)90222-U
-
(1991)
Physica D
, vol.51
, pp. 52-98
-
-
Casdagli, M.1
Eubank, S.2
Farmer, J.3
Gibson, J.4
-
15
-
-
35949006791
-
Determining minimum embedding dimension using a geometrical construction
-
M. B. Kennel, R. Brown, and H. D. I. Abarbanel, "Determining minimum embedding dimension using a geometrical construction," Phys. Rev. A 45, 3403-3411 (1992).10.1103/PhysRevA.45.3403
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.B.1
Brown, R.2
Abarbanel, H.D.I.3
-
16
-
-
84956258433
-
Optimal embeddings of chaotic attractors from topological considerations
-
W. Liebert, K. Pawelzik, and H. Schuster, "Optimal embeddings of chaotic attractors from topological considerations," Europhys. Lett. 14, 521 (1991).10.1209/0295-5075/14/6/004
-
(1991)
Europhys. Lett.
, vol.14
, pp. 521
-
-
Liebert, W.1
Pawelzik, K.2
Schuster, H.3
-
17
-
-
84995328190
-
A unified approach to attractor reconstruction
-
L. Pecora, L. Moniz, J. Nichols, and T. Carroll, "A unified approach to attractor reconstruction," Chaos 17, 013110 (2007).10.1063/1.2430294
-
(2007)
Chaos
, vol.17
, pp. 013110
-
-
Pecora, L.1
Moniz, L.2
Nichols, J.3
Carroll, T.4
-
18
-
-
0000454552
-
Nonlinear time sequence analysis
-
P. Grassberger, T. Schreiber, and C. Schaffrath, "Nonlinear time sequence analysis," Int. J. Bifurcation Chaos 1, 521 (1991).10.1142/S0218127491000403
-
(1991)
Int. J. Bifurcation Chaos
, vol.1
, pp. 521
-
-
Grassberger, P.1
Schreiber, T.2
Schaffrath, C.3
-
19
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
P. Grassberger and I. Procaccia, "Measuring the strangeness of strange attractors," Physica D 9, 189 (1983).10.1016/0167-2789(83)90298-1
-
(1983)
Physica D
, vol.9
, pp. 189
-
-
Grassberger, P.1
Procaccia, I.2
-
20
-
-
21344485017
-
How many delay coordinates do you need?
-
T. Sauer and J. Yorke, "How many delay coordinates do you need?," Int. J. Bifurcation Chaos 3, 737 (1993).10.1142/S0218127493000647
-
(1993)
Int. J. Bifurcation Chaos
, vol.3
, pp. 737
-
-
Sauer, T.1
Yorke, J.2
-
21
-
-
0001413326
-
Spurious dimension from correlation algorithms applied to limited time series data
-
J. Theiler, "Spurious dimension from correlation algorithms applied to limited time series data," Phys. Rev. E 34, 2427 (1986).10.1103/PhysRevA.34.2427
-
(1986)
Phys. Rev. E
, vol.34
, pp. 2427
-
-
Theiler, J.1
-
22
-
-
0000090102
-
Finite sample corrections to entropy and dimension estimates
-
P. Grassberger, "Finite sample corrections to entropy and dimension estimates," Phys. Lett. A 128, 369 (1988).10.1016/0375-9601(88)90193-4
-
(1988)
Phys. Lett. A
, vol.128
, pp. 369
-
-
Grassberger, P.1
-
23
-
-
0039269009
-
Inferring chaotic dynamics from time series: On which length scale determinism becomes visible
-
E. Olbrich and H. Kantz, "Inferring chaotic dynamics from time series: On which length scale determinism becomes visible," Phys. Lett. A 232, 63-69 (1997).10.1016/S0375-9601(97)00351-4
-
(1997)
Phys. Lett. A
, vol.232
, pp. 63-69
-
-
Olbrich, E.1
Kantz, H.2
-
24
-
-
0000201862
-
Intrinsic limits on dimension calculations
-
L. Smith, "Intrinsic limits on dimension calculations," Phys. Lett. A 133, 283-288 (1988).10.1016/0375-9601(88)90445-8
-
(1988)
Phys. Lett. A
, vol.133
, pp. 283-288
-
-
Smith, L.1
-
25
-
-
6444240297
-
Lyapunov exponents from time series
-
J. Eckmann, S. Oliffson-Kamphorst, D. Ruelle, and S. Ciliberto, "Lyapunov exponents from time series," Phys. Rev. A 34, 4971 (1986).10.1103/PhysRevA.34.4971
-
(1986)
Phys. Rev. A
, vol.34
, pp. 4971
-
-
Eckmann, J.1
Oliffson-Kamphorst, S.2
Ruelle, D.3
Ciliberto, S.4
-
26
-
-
0008494528
-
Determining Lyapunov exponents from time series
-
A. Wolf, J. Swift, H. Swinney, and J. Vastano, "Determining Lyapunov exponents from time series," Physica D 16, 285 (1985).10.1016/0167-2789(85)90011-9
-
(1985)
Physica D
, vol.16
, pp. 285
-
-
Wolf, A.1
Swift, J.2
Swinney, H.3
Vastano, J.4
-
27
-
-
0001394076
-
Measurement of the Lyapunov spectrum from a chaotic time series
-
M. Sano and Y. Sawada, "Measurement of the Lyapunov spectrum from a chaotic time series," Phys. Rev. Lett. 55, 1082 (1985).10.1103/PhysRevLett.55.1082
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 1082
-
-
Sano, M.1
Sawada, Y.2
-
28
-
-
0001470336
-
Spurious Lyapunov exponents in attractor reconstruction
-
T. Sauer, J. Tempkin, and J. Yorke, "Spurious Lyapunov exponents in attractor reconstruction," Phys. Rev. Lett. 81, 4341 (1998).10.1103/PhysRevLett.81.4341
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4341
-
-
Sauer, T.1
Tempkin, J.2
Yorke, J.3
-
29
-
-
84870910745
-
Covariant Lyapunov vectors from reconstructed dynamics: The geometry behind true and spurious Lyapunov exponents
-
H.-L. Yang, G. Radons, and H. Kantz, "Covariant Lyapunov vectors from reconstructed dynamics: The geometry behind true and spurious Lyapunov exponents," Phys. Rev. Lett. 109, 244101 (2012).10.1103/PhysRevLett.109.244101
-
(2012)
Phys. Rev. Lett.
, vol.109
, pp. 244101
-
-
Yang, H.-L.1
Radons, G.2
Kantz, H.3
-
30
-
-
84961291543
-
Characteristic Lyapunov exponents and smooth ergodic theory
-
Y. Pesin, "Characteristic Lyapunov exponents and smooth ergodic theory," Russ. Math. Sur. 32, 55 (1977).10.1070/RM1977v032n04ABEH001639
-
(1977)
Russ. Math. Sur.
, vol.32
, pp. 55
-
-
Pesin, Y.1
-
32
-
-
0000541993
-
Discriminating power of measures for nonlinearity in a time series
-
T. Schreiber and A. Schmitz, "Discriminating power of measures for nonlinearity in a time series," Phys. Rev. E 55, 5443 (1997).10.1103/PhysRevE.55.5443
-
(1997)
Phys. Rev. E
, vol.55
, pp. 5443
-
-
Schreiber, T.1
Schmitz, A.2
-
33
-
-
44049111332
-
Testing for nonlinearity in time series: The method of surrogate data
-
J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Farmer, "Testing for nonlinearity in time series: The method of surrogate data," Physica D 58, 77-94 (1992).10.1016/0167-2789(92)90102-S
-
(1992)
Physica D
, vol.58
, pp. 77-94
-
-
Theiler, J.1
Eubank, S.2
Longtin, A.3
Galdrikian, B.4
Farmer, J.5
-
34
-
-
6144236430
-
Improved surrogate data for nonlinearity tests
-
T. Schreiber and A. Schmitz, "Improved surrogate data for nonlinearity tests," Phys. Rev. Lett. 77, 635 (1996).10.1103/PhysRevLett.77.635
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 635
-
-
Schreiber, T.1
Schmitz, A.2
-
35
-
-
0345792394
-
Surrogate time series
-
T. Schreiber and A. Schmitz, "Surrogate time series," Physica D 142, 346-382 (2000).10.1016/S0167-2789(00)00043-9
-
(2000)
Physica D
, vol.142
, pp. 346-382
-
-
Schreiber, T.1
Schmitz, A.2
-
36
-
-
84944486544
-
Prediction and entropy of printed English
-
C. E. Shannon, "Prediction and entropy of printed English," Bell Syst. Tech. J. 30, 50-64 (1951).10.1002/j.1538-7305.1951.tb01366.x
-
(1951)
Bell Syst. Tech. J.
, vol.30
, pp. 50-64
-
-
Shannon, C.E.1
-
37
-
-
0003831421
-
-
(Cambridge University Press).
-
H. Petersen, Ergodic Theory (Cambridge University Press, 1989).
-
(1989)
Ergodic Theory
-
-
Petersen, H.1
-
39
-
-
4243997063
-
Permutation entropy: A natural complexity measure for time series
-
C. Bandt and B. Pompe, "Permutation entropy: A natural complexity measure for time series," Phys. Rev. Lett. 88, 174102 (2002).10.1103/PhysRevLett.88.174102
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 174102
-
-
Bandt, C.1
Pompe, B.2
-
41
-
-
84922531312
-
Recurrence plots of dynamical systems
-
J.-P. Eckmann, S. Kamphorst, and D. Ruelle, "Recurrence plots of dynamical systems," Europhys. Lett. 4, 973-977 (1987).10.1209/0295-5075/4/9/004
-
(1987)
Europhys. Lett.
, vol.4
, pp. 973-977
-
-
Eckmann, J.-P.1
Kamphorst, S.2
Ruelle, D.3
-
42
-
-
0036711480
-
Recurrence plots and unstable periodic orbits
-
E. Bradley and R. Mantilla, "Recurrence plots and unstable periodic orbits," Chaos 12, 596-600 (2002).10.1063/1.1488255
-
(2002)
Chaos
, vol.12
, pp. 596-600
-
-
Bradley, E.1
Mantilla, R.2
-
43
-
-
0000688735
-
Embeddings and delays as derived from recurrence quantification analysis
-
J. Zbilut and C. Webber, "Embeddings and delays as derived from recurrence quantification analysis," Phys. Lett. A 171, 199-203 (1992).10.1016/0375-9601(92)90426-M
-
(1992)
Phys. Lett. A
, vol.171
, pp. 199-203
-
-
Zbilut, J.1
Webber, C.2
-
44
-
-
0028354598
-
Dynamical assessment of physiological systems and states using recurrence plot strategies
-
C. Webber and J. Zbilut, "Dynamical assessment of physiological systems and states using recurrence plot strategies," J. Appl. Physiol. 76, 965-973 (1994).
-
(1994)
J. Appl. Physiol.
, vol.76
, pp. 965-973
-
-
Webber, C.1
Zbilut, J.2
-
45
-
-
33846338227
-
Recurrence plots for the analysis of complex systems
-
N. Marwan, M. Romano, M. Thiel, and J. Kurths, "Recurrence plots for the analysis of complex systems," Phys. Rep. 438, 237 (2007).10.1016/j.physrep.2006.11.001
-
(2007)
Phys. Rep.
, vol.438
, pp. 237
-
-
Marwan, N.1
Romano, M.2
Thiel, M.3
Kurths, J.4
-
46
-
-
79959377152
-
Recurrence-based time series analysis by means of complex network methods
-
R. Donner, M. Small, J. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, "Recurrence-based time series analysis by means of complex network methods," Int. J. Bifurcation Chaos 21, 1019-1046 (2011).10.1142/S0218127411029021
-
(2011)
Int. J. Bifurcation Chaos
, vol.21
, pp. 1019-1046
-
-
Donner, R.1
Small, M.2
Donges, J.3
Marwan, N.4
Zou, Y.5
Xiang, R.6
Kurths, J.7
-
47
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
J.-P. Eckmann and D. Ruelle, "Ergodic theory of chaos and strange attractors," Rev. Mod. Phys. 57, 617 (1985).10.1103/RevModPhys.57.617
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
48
-
-
0014534148
-
Atmospheric predictability as revealed by naturally occurring analogues
-
E. Lorenz, "Atmospheric predictability as revealed by naturally occurring analogues," J. Atmos. Sci. 26, 636-646 (1969).10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
-
(1969)
J. Atmos. Sci.
, vol.26
, pp. 636-646
-
-
Lorenz, E.1
-
49
-
-
3042606838
-
Noise filtering in the discrete time dynamical systems
-
A. Pikovsky, "Noise filtering in the discrete time dynamical systems," Sov. J. Commun. Technol. Electron. 31, 911-914 (1986).
-
(1986)
Sov. J. Commun. Technol. Electron.
, vol.31
, pp. 911-914
-
-
Pikovsky, A.1
-
51
-
-
84866931095
-
Predicting the outcome of roulette
-
M. Small and C. Tse, "Predicting the outcome of roulette," Chaos 22, 033150 (2012).10.1063/1.4753920
-
(2012)
Chaos
, vol.22
, pp. 033150
-
-
Small, M.1
Tse, C.2
-
53
-
-
34249982739
-
Predicting chaotic time series
-
J. Farmer and J. Sidorowich, "Predicting chaotic time series," Phys. Rev. Lett. 59, 845-848 (1987).10.1103/PhysRevLett.59.845
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 845-848
-
-
Farmer, J.1
Sidorowich, J.2
-
54
-
-
45149144372
-
Nonlinear prediction of chaotic time series
-
M. Casdagli, "Nonlinear prediction of chaotic time series," Physica D 35, 335-356 (1989).10.1016/0167-2789(89)90074-2
-
(1989)
Physica D
, vol.35
, pp. 335-356
-
-
Casdagli, M.1
-
55
-
-
0025199496
-
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
-
G. Sugihara and R. May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature 344, 734-741 (1990).10.1038/344734a0
-
(1990)
Nature
, vol.344
, pp. 734-741
-
-
Sugihara, G.1
May, R.2
-
57
-
-
0005777198
-
Local random analogue prediction of nonlinear processes
-
F. Paparella, A. Provenzale, L. Smith, C. Taricco, and R. Vio, "Local random analogue prediction of nonlinear processes," Phys. Lett. A 235, 233-240 (1997).10.1016/S0375-9601(97)00607-5
-
(1997)
Phys. Lett. A
, vol.235
, pp. 233-240
-
-
Paparella, F.1
Provenzale, A.2
Smith, L.3
Taricco, C.4
Vio, R.5
-
58
-
-
85035283951
-
Markov models from data by simple nonlinear time series predictors in delay embedding spaces
-
M. Ragwitz and H. Kantz, "Markov models from data by simple nonlinear time series predictors in delay embedding spaces," Phys. Rev. E 65, 056201 (2002).10.1103/PhysRevE.65.056201
-
(2002)
Phys. Rev. E
, vol.65
, pp. 056201
-
-
Ragwitz, M.1
Kantz, H.2
-
59
-
-
84999349427
-
Prediction in projection
-
J. Garland and E. Bradley, "Prediction in projection," preprint arXiv:1503.01678 (2015).
-
(2015)
-
-
Garland, J.1
Bradley, E.2
-
60
-
-
0034227589
-
Chaos or noise: Difficulties of a distinction
-
M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, "Chaos or noise: Difficulties of a distinction," Phys. Rev. E 62, 427 (2000).10.1103/PhysRevE.62.427
-
(2000)
Phys. Rev. E
, vol.62
, pp. 427
-
-
Cencini, M.1
Falcioni, M.2
Olbrich, E.3
Kantz, H.4
Vulpiani, A.5
-
61
-
-
0001403797
-
Don't bleach chaotic data
-
J. Theiler and S. Eubank, "Don't bleach chaotic data," Chaos 3, 771-782 (1993).10.1063/1.165936
-
(1993)
Chaos
, vol.3
, pp. 771-782
-
-
Theiler, J.1
Eubank, S.2
-
62
-
-
0002635074
-
Exploiting chaos to predict the future and reduce noise
-
(World Scientific).
-
J. Farmer and J. Sidorowich, "Exploiting chaos to predict the future and reduce noise," in Evolution, Learning and Cognition (World Scientific, 1988).
-
(1988)
Evolution, Learning and Cognition
-
-
Farmer, J.1
Sidorowich, J.2
-
63
-
-
0000621736
-
Noise reduction in dynamical systems
-
E. Kostelich and J. Yorke, "Noise reduction in dynamical systems," Phys. Rev. A 38, 1649-1652 (1988).10.1103/PhysRevA.38.1649
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1649-1652
-
-
Kostelich, E.1
Yorke, J.2
-
64
-
-
36448999076
-
On noise reduction methods for chaotic data
-
P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and T. Schreiber, "On noise reduction methods for chaotic data," Chaos 3, 127 (1993).10.1063/1.165979
-
(1993)
Chaos
, vol.3
, pp. 127
-
-
Grassberger, P.1
Hegger, R.2
Kantz, H.3
Schaffrath, C.4
Schreiber, T.5
-
65
-
-
3042589915
-
Topology-based signal separation
-
V. Robins, N. Rooney, and E. Bradley, "Topology-based signal separation," Chaos 14, 305-316 (2004).10.1063/1.1705852
-
(2004)
Chaos
, vol.14
, pp. 305-316
-
-
Robins, V.1
Rooney, N.2
Bradley, E.3
-
66
-
-
0027795911
-
Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation
-
A. Tsonis, J. Elsner, and K. Georgakakos, "Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation," J. Atmos. Sci. 50, 2549-2555 (1993).10.1175/1520-0469(1993)050>2549:ETDOWA>2.0.CO;2
-
(1993)
J. Atmos. Sci.
, vol.50
, pp. 2549-2555
-
-
Tsonis, A.1
Elsner, J.2
Georgakakos, K.3
-
67
-
-
44049117207
-
Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
-
J.-P. Eckmann and D. Ruelle, "Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems," Physica D 56, 185-187 (1992).10.1016/0167-2789(92)90023-G
-
(1992)
Physica D
, vol.56
, pp. 185-187
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
68
-
-
0001540847
-
Fitting partial differential equations to space-time dynamics
-
M. Bär, R. Hegger, and H. Kantz, "Fitting partial differential equations to space-time dynamics," Phys. Rev. E 59, 337 (1999).10.1103/PhysRevE.59.337
-
(1999)
Phys. Rev. E
, vol.59
, pp. 337
-
-
Bär, M.1
Hegger, R.2
Kantz, H.3
-
69
-
-
0001766834
-
Prediction of spatiotemporal time series based on reconstructed local states
-
U. Parlitz and C. Merkwirth, "Prediction of spatiotemporal time series based on reconstructed local states," Phys. Rev. Lett. 84, 1890 (2000).10.1103/PhysRevLett.84.1890
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 1890
-
-
Parlitz, U.1
Merkwirth, C.2
-
70
-
-
0002169828
-
Interspike interval embedding of chaotic signals
-
T. Sauer, "Interspike interval embedding of chaotic signals," Chaos 5, 127 (1995).10.1063/1.166094
-
(1995)
Chaos
, vol.5
, pp. 127
-
-
Sauer, T.1
-
71
-
-
0031138737
-
Embedding of sequences of time intervals
-
R. Hegger and H. Kantz, "Embedding of sequences of time intervals," Europhys. Lett. 38, 267-272 (1997).10.1209/epl/i1997-00236-0
-
(1997)
Europhys. Lett.
, vol.38
, pp. 267-272
-
-
Hegger, R.1
Kantz, H.2
-
72
-
-
66549126923
-
Optimal Markov approximations and generalized embeddings
-
D. Holstein and H. Kantz, "Optimal Markov approximations and generalized embeddings," Phys. Rev. E 79, 056202 (2009).10.1103/PhysRevE.79.056202
-
(2009)
Phys. Rev. E
, vol.79
, pp. 056202
-
-
Holstein, D.1
Kantz, H.2
-
73
-
-
0031556902
-
Predictability in the large: An extension of the concept of Lyapunov exponent
-
E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, "Predictability in the large: An extension of the concept of Lyapunov exponent," J. Phys. A 30, 1 (1997).10.1088/0305-4470/30/1/003
-
(1997)
J. Phys. A
, vol.30
, pp. 1
-
-
Aurell, E.1
Boffetta, G.2
Crisanti, A.3
Paladin, G.4
Vulpiani, A.5
|