메뉴 건너뛰기




Volumn 19, Issue 1, 2020, Pages

Correction to: Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose (Microbial Cell Factories, (2020), 19, 1, (218), 10.1186/s12934-020-01476-0);Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose

Author keywords

AsUGT; Chromosomal integration; Gastrodin; Metabolic engineering; Phenolic glycoside; Saccharomyces cerevisiae

Indexed keywords

4 HYDROXYBENZYL ALCOHOL; ALCOHOL DERIVATIVE; GASTRODIN; GLUCOSE; GLUCOSYLTRANSFERASE; GLYCOSIDE; PLANT EXTRACT; UNCLASSIFIED DRUG; 3 DEOXY 7 PHOSPHOHEPTULONATE SYNTHASE; BACTERIAL PROTEIN; BENZYL ALCOHOL DERIVATIVE; CARBOXYLIC ACID REDUCTASE; CHORISMATE PYRUVATE LYASE; GLUCOSIDE; LYASE; OXIDOREDUCTASE; PHOSPHOPANTETHEINYL TRANSFERASE; PHOSPHOTRANSFERASE; PLANT PROTEIN;

EID: 85096654750     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-022-01747-y     Document Type: Erratum
Times cited : (19)

References (37)
  • 1
    • 84988527743 scopus 로고    scopus 로고
    • Gastrodia elata and epilepsy: Rationale and therapeutic potential
    • Matias M, Silvestre S, Falcao A, Alves G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. Phytomedicine. 2016;23:1511–26. DOI: 10.1016/j.phymed.2016.09.001
    • (2016) Phytomedicine , vol.23 , pp. 1511-1526
    • Matias, M.1    Silvestre, S.2    Falcao, A.3    Alves, G.4
  • 2
    • 84908149003 scopus 로고    scopus 로고
    • Chinese Medical Science and Technology Press (Beijing)
    • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Chinese Medical Science and Technology Press (Beijing). 2010; 54–55.
    • (2010) Pharmacopoeia of the People’s Republic of China , pp. 54-55
  • 4
    • 85076694798 scopus 로고    scopus 로고
    • Gastrodin ameliorates motor learning deficits through preserving cerebellar long-term depression pathways in diabetic rats
    • Deng CK, Mu ZH, Miao YH, Liu YD, Zhou L, Huang YJ, Zhang F, Wang YY, Yang ZH, Qian ZY, et al. Gastrodin ameliorates motor learning deficits through preserving cerebellar long-term depression pathways in diabetic rats. Front Neurosci. 2019;13:1239. DOI: 10.3389/fnins.2019.01239
    • (2019) Front Neurosci , vol.13 , pp. 1239
    • Deng, C.K.1    Mu, Z.H.2    Miao, Y.H.3    Liu, Y.D.4    Zhou, L.5    Huang, Y.J.6    Zhang, F.7    Wang, Y.Y.8    Yang, Z.H.9    Qian, Z.Y.10
  • 5
    • 85080840603 scopus 로고    scopus 로고
    • Gastrodin Inhibits H2O2-Induced Ferroptosis through Its Antioxidative Effect in Rat Glioma Cell Line C6
    • COI: 1:CAS:528:DC%2BB3cXhvVehu7nN
    • Jiang T, Chu J, Chen H, Cheng H, Su J, Wang X, Cao Y, Tian S, Li Q. Gastrodin Inhibits H2O2-Induced Ferroptosis through Its Antioxidative Effect in Rat Glioma Cell Line C6. Biol Pharm Bull. 2020;43:480–7. DOI: 10.1248/bpb.b19-00824
    • (2020) Biol Pharm Bull , vol.43 , pp. 480-487
    • Jiang, T.1    Chu, J.2    Chen, H.3    Cheng, H.4    Su, J.5    Wang, X.6    Cao, Y.7    Tian, S.8    Li, Q.9
  • 6
    • 84939992728 scopus 로고    scopus 로고
    • Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway
    • COI: 1:CAS:528:DC%2BC2MXmslKlsw%3D%3D
    • Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C. Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res. 2015;40:661–73. DOI: 10.1007/s11064-015-1513-5
    • (2015) Neurochem Res , vol.40 , pp. 661-673
    • Peng, Z.1    Wang, S.2    Chen, G.3    Cai, M.4    Liu, R.5    Deng, J.6    Liu, J.7    Zhang, T.8    Tan, Q.9    Hai, C.10
  • 7
    • 85061060566 scopus 로고    scopus 로고
    • Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation
    • Hu M, Yan H, Fu Y, Jiang Y, Yao W, Yu S, Zhang L, Wu Q, Ding A, Shan M. Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation. Molecules. 2019;24:547. DOI: 10.3390/molecules24030547
    • (2019) Molecules , vol.24 , pp. 547
    • Hu, M.1    Yan, H.2    Fu, Y.3    Jiang, Y.4    Yao, W.5    Yu, S.6    Zhang, L.7    Wu, Q.8    Ding, A.9    Shan, M.10
  • 8
    • 85045203045 scopus 로고    scopus 로고
    • The content analysis of gastrodin and gastrodigenin obtained by different processing methods
    • COI: 1:CAS:528:DC%2BC1cXitlGrsbvE
    • Liu Y, Huang G. The content analysis of gastrodin and gastrodigenin obtained by different processing methods. J Chromatogr Sci. 2018;56:65–7. DOI: 10.1093/chromsci/bmx085
    • (2018) J Chromatogr Sci , vol.56 , pp. 65-67
    • Liu, Y.1    Huang, G.2
  • 9
    • 84960088215 scopus 로고    scopus 로고
    • Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes
    • Tsai CC, Wu KM, Chiang TY, Huang CY, Chou CH, Li SJ, Chiang YC. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genomics. 2016;17:212. DOI: 10.1186/s12864-016-2508-6
    • (2016) BMC Genomics , vol.17 , pp. 212
    • Tsai, C.C.1    Wu, K.M.2    Chiang, T.Y.3    Huang, C.Y.4    Chou, C.H.5    Li, S.J.6    Chiang, Y.C.7
  • 10
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • COI: 1:CAS:528:DC%2BC2cXivFalsb8%3D
    • Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J. 2014;9:609–20. DOI: 10.1002/biot.201300445
    • (2014) Biotechnol J , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 11
    • 84955325204 scopus 로고    scopus 로고
    • De novo biosynthesis of Gastrodin in Escherichia coli
    • COI: 1:CAS:528:DC%2BC28XhtVejtL0%3D
    • Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y. De novo biosynthesis of Gastrodin in Escherichia coli. Metab Eng. 2016;35:138–47. DOI: 10.1016/j.ymben.2016.01.002
    • (2016) Metab Eng , vol.35 , pp. 138-147
    • Bai, Y.1    Yin, H.2    Bi, H.3    Zhuang, Y.4    Liu, T.5    Ma, Y.6
  • 12
    • 85075345729 scopus 로고    scopus 로고
    • Building microbial factories for the production of aromatic amino acid pathway derivatives: from commodity chemicals to plant-sourced natural products
    • COI: 1:CAS:528:DC%2BC1MXhvVKkt7nE
    • Cao M, Gao M, Suastegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: from commodity chemicals to plant-sourced natural products. Metab Eng. 2020;58:94–132. DOI: 10.1016/j.ymben.2019.08.008
    • (2020) Metab Eng , vol.58 , pp. 94-132
    • Cao, M.1    Gao, M.2    Suastegui, M.3    Mei, Y.4    Shao, Z.5
  • 13
    • 85078658435 scopus 로고    scopus 로고
    • Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC1MXitFSqt7fM
    • Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J. Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. J Agric Food Chem. 2020;68:1015–21. DOI: 10.1021/acs.jafc.9b05218
    • (2020) J Agric Food Chem , vol.68 , pp. 1015-1021
    • Gao, S.1    Lyu, Y.2    Zeng, W.3    Du, G.4    Zhou, J.5    Chen, J.6
  • 14
    • 85044955242 scopus 로고    scopus 로고
    • Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies
    • Averesch NJH, Kromer JO. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front Bioeng Biotechnol. 2018;6:32. DOI: 10.3389/fbioe.2018.00032
    • (2018) Front Bioeng Biotechnol , vol.6 , pp. 32
    • Averesch, N.J.H.1    Kromer, J.O.2
  • 15
    • 85074254948 scopus 로고    scopus 로고
    • Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
    • COI: 1:CAS:528:DC%2BC1MXitV2qt7vL
    • Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, Chen Y. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat Commun. 2019;10:4976. DOI: 10.1038/s41467-019-12961-5
    • (2019) Nat Commun , vol.10 , pp. 4976
    • Liu, Q.1    Yu, T.2    Li, X.3    Chen, Y.4    Campbell, K.5    Nielsen, J.6    Chen, Y.7
  • 16
    • 85070188194 scopus 로고    scopus 로고
    • Yeast systems biology. Model organism and cell factory
    • Nielsen J. Yeast systems biology. Model organism and cell factory. Biotechnol J. 2019;14:e1800421. DOI: 10.1002/biot.201800421
    • (2019) Biotechnol J. , vol.14
    • Nielsen, J.1
  • 17
    • 0036009873 scopus 로고    scopus 로고
    • Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics
    • COI: 1:CAS:528:DC%2BD38XisFWhtLw%3D
    • Hefner T, Arend J, Warzecha H, Siems K, Stockigt J. Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics. Bioorg Med Chem. 2002;10:1731–41. DOI: 10.1016/S0968-0896(02)00029-9
    • (2002) Bioorg Med Chem , vol.10 , pp. 1731-1741
    • Hefner, T.1    Arend, J.2    Warzecha, H.3    Siems, K.4    Stockigt, J.5
  • 18
    • 84908477928 scopus 로고    scopus 로고
    • In vivo instability of chorismate causes substrate loss during fermentative production of aromatics
    • COI: 1:CAS:528:DC%2BC2cXhtFWhtrzJ
    • Winter G, Averesch NJ, Nunez-Bernal D, Kromer JO. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics. Yeast. 2014;31:333–41. DOI: 10.1002/yea.3025
    • (2014) Yeast , vol.31 , pp. 333-341
    • Winter, G.1    Averesch, N.J.2    Nunez-Bernal, D.3    Kromer, J.O.4
  • 19
    • 77956251553 scopus 로고    scopus 로고
    • para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3cXhtVOnsL3O
    • Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem. 2010;285:27827–38. DOI: 10.1074/jbc.M110.151894
    • (2010) J Biol Chem , vol.285 , pp. 27827-27838
    • Marbois, B.1    Xie, L.X.2    Choi, S.3    Hirano, K.4    Hyman, K.5    Clarke, C.F.6
  • 20
    • 84872193590 scopus 로고    scopus 로고
    • Production of aromatics in Saccharomyces cerevisiae–a feasibility study
    • COI: 1:CAS:528:DC%2BC38XntFaitb0%3D
    • Kromer JO, Nunez-Bernal D, Averesch NJ, Hampe J, Varela J, Varela C. Production of aromatics in Saccharomyces cerevisiae–a feasibility study. J Biotechnol. 2013;163:184–93. DOI: 10.1016/j.jbiotec.2012.04.014
    • (2013) J Biotechnol , vol.163 , pp. 184-193
    • Kromer, J.O.1    Nunez-Bernal, D.2    Averesch, N.J.3    Hampe, J.4    Varela, J.5    Varela, C.6
  • 22
    • 0026778048 scopus 로고
    • Foreign gene expression in yeast: a review
    • COI: 1:CAS:528:DyaK38XkvVChtbs%3D
    • Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992;8:423–88. DOI: 10.1002/yea.320080602
    • (1992) Yeast , vol.8 , pp. 423-488
    • Romanos, M.A.1    Scorer, C.A.2    Clare, J.J.3
  • 23
    • 0021028478 scopus 로고
    • The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number
    • COI: 1:CAS:528:DyaL2cXjtVejsA%3D%3D
    • Erhart E, Hollenberg CP. The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol. 1983;156:625–35. DOI: 10.1128/JB.156.2.625-635.1983
    • (1983) J Bacteriol , vol.156 , pp. 625-635
    • Erhart, E.1    Hollenberg, C.P.2
  • 24
    • 85018473092 scopus 로고    scopus 로고
    • Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli
    • COI: 1:CAS:528:DC%2BC2sXjsF2hsg%3D%3D
    • Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synth Biol. 2017;6:710–20. DOI: 10.1021/acssynbio.6b00350
    • (2017) ACS Synth Biol. , vol.6 , pp. 710-720
    • Englaender, J.A.1    Jones, J.A.2    Cress, B.F.3    Kuhlman, T.E.4    Linhardt, R.J.5    Koffas, M.A.G.6
  • 25
    • 85062960167 scopus 로고    scopus 로고
    • Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica
    • COI: 1:CAS:528:DC%2BC1MXhvF2itLw%3D
    • Lv Y, Edwards H, Zhou J, Xu P. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. ACS Synth Biol. 2019;8:568–76. DOI: 10.1021/acssynbio.8b00535
    • (2019) ACS Synth Biol , vol.8 , pp. 568-576
    • Lv, Y.1    Edwards, H.2    Zhou, J.3    Xu, P.4
  • 26
    • 0031015587 scopus 로고    scopus 로고
    • High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma
    • COI: 1:CAS:528:DyaK28XntlOgsr8%3D
    • Wery J, Gutker D, Renniers AC, Verdoes JC, van Ooyen AJ. High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene. 1997;184:89–97. DOI: 10.1016/S0378-1119(96)00579-3
    • (1997) Gene , vol.184 , pp. 89-97
    • Wery, J.1    Gutker, D.2    Renniers, A.C.3    Verdoes, J.C.4    van Ooyen, A.J.5
  • 27
    • 0030019291 scopus 로고    scopus 로고
    • An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK28XjvVajuw%3D%3D
    • Parekh RN, Shaw MR, Wittrup KD. An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae. Biotechnol Prog. 1996;12:16–21. DOI: 10.1021/bp9500627
    • (1996) Biotechnol Prog , vol.12 , pp. 16-21
    • Parekh, R.N.1    Shaw, M.R.2    Wittrup, K.D.3
  • 28
    • 84886486790 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20C:146–56. DOI: 10.1016/j.ymben.2013.10.004
    • (2013) Metab Eng , vol.20C , pp. 146-156
    • Dai, Z.1    Liu, Y.2    Zhang, X.3    Shi, M.4    Wang, B.5    Wang, D.6    Huang, L.7    Zhang, X.8
  • 29
    • 85066404812 scopus 로고    scopus 로고
    • Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy
    • Wang C, Su X, Sun M, Zhang M, Wu J, Xing J, Wang Y, Xue J, Liu X, Sun W, Chen S. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microb Cell Fact. 2019;18:95. DOI: 10.1186/s12934-019-1138-5
    • (2019) Microb Cell Fact , vol.18 , pp. 95
    • Wang, C.1    Su, X.2    Sun, M.3    Zhang, M.4    Wu, J.5    Xing, J.6    Wang, Y.7    Xue, J.8    Liu, X.9    Sun, W.10    Chen, S.11
  • 30
    • 85046360125 scopus 로고    scopus 로고
    • Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose
    • COI: 1:CAS:528:DC%2BC1cXnslKmurs%3D
    • Jiang JJ, Yin H, Wang SA, Zhuang YB, Liu SW, Liu T, Ma YH. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. J Agric Food Chem. 2018;66:4431–8. DOI: 10.1021/acs.jafc.8b01272
    • (2018) J Agric Food Chem , vol.66 , pp. 4431-4438
    • Jiang, J.J.1    Yin, H.2    Wang, S.A.3    Zhuang, Y.B.4    Liu, S.W.5    Liu, T.6    Ma, Y.H.7
  • 31
    • 84976902235 scopus 로고    scopus 로고
    • Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC28XhtVyntL7J
    • Suastegui M, Guo W, Feng X, Shao Z. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng. 2016;113:2676–85. DOI: 10.1002/bit.26037
    • (2016) Biotechnol Bioeng , vol.113 , pp. 2676-2685
    • Suastegui, M.1    Guo, W.2    Feng, X.3    Shao, Z.4
  • 33
    • 85087533155 scopus 로고    scopus 로고
    • Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli which can be applied in generation of aromatic compound-producing strains
    • Koma D, Kishida T, Yoshida E, Ohashi H, Yamanaka H, Moriyoshi K, Nagamori E, Ohmoto T. Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli which can be applied in generation of aromatic compound-producing strains. Appl Environ Microbiol. 2020. 10.1128/AEM.00525-20. DOI: 10.1128/AEM.00525-20
    • (2020) Appl Environ Microbiol.
    • Koma, D.1    Kishida, T.2    Yoshida, E.3    Ohashi, H.4    Yamanaka, H.5    Moriyoshi, K.6    Nagamori, E.7    Ohmoto, T.8
  • 34
    • 0028258205 scopus 로고
    • Formation of 4-Hydroxybenzoate in Escherichia Coli Characterization of the Ubic Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase
    • COI: 1:CAS:528:DyaK2cXlsFWrsL0%3D
    • Siebert M, Severin K, Heide L. Formation of 4-Hydroxybenzoate in Escherichia Coli Characterization of the Ubic Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase. Microbiology-Sgm. 1994;140:897–904. DOI: 10.1099/00221287-140-4-897
    • (1994) Microbiology-Sgm , vol.140 , pp. 897-904
    • Siebert, M.1    Severin, K.2    Heide, L.3
  • 35
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • COI: 1:STN:280:DC%2BD387lt1GnsQ%3D%3D
    • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23. DOI: 10.1093/nar/30.6.e23
    • (2002) Nucleic Acids Res , vol.30
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 36
    • 84973410276 scopus 로고    scopus 로고
    • Rapid and efficient plasmid construction by homologous recombination in yeast
    • Van Leeuwen J, Andrews B, Boone C, Tan G. Rapid and efficient plasmid construction by homologous recombination in yeast. Cold Spring Harb Protoc. 2015;2015:pdb prot085100. DOI: 10.1101/pdb.prot085100
    • (2015) Cold Spring Harb Protoc. , vol.2015
    • Van Leeuwen, J.1    Andrews, B.2    Boone, C.3    Tan, G.4
  • 37
    • 44949231424 scopus 로고    scopus 로고
    • T method
    • COI: 1:CAS:528:DC%2BD1cXmvVemt7c%3D
    • T method. Nat Protoc. 2008;3:1101–8. DOI: 10.1038/nprot.2008.73
    • (2008) Nat Protoc , vol.3 , pp. 1101-1108
    • Schmittgen, T.D.1    Livak, K.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.