-
1
-
-
84988527743
-
Gastrodia elata and epilepsy: Rationale and therapeutic potential
-
Matias M, Silvestre S, Falcao A, Alves G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. Phytomedicine. 2016;23:1511–26. DOI: 10.1016/j.phymed.2016.09.001
-
(2016)
Phytomedicine
, vol.23
, pp. 1511-1526
-
-
Matias, M.1
Silvestre, S.2
Falcao, A.3
Alves, G.4
-
2
-
-
84908149003
-
-
Chinese Medical Science and Technology Press (Beijing)
-
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Chinese Medical Science and Technology Press (Beijing). 2010; 54–55.
-
(2010)
Pharmacopoeia of the People’s Republic of China
, pp. 54-55
-
-
-
3
-
-
85041845079
-
A review on central nervous system effects of gastrodin
-
Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G. A review on central nervous system effects of gastrodin. Front Pharmacol. 2018;9:24. DOI: 10.3389/fphar.2018.00024
-
(2018)
Front Pharmacol
, vol.9
, pp. 24
-
-
Liu, Y.1
Gao, J.2
Peng, M.3
Meng, H.4
Ma, H.5
Cai, P.6
Xu, Y.7
Zhao, Q.8
Si, G.9
-
4
-
-
85076694798
-
Gastrodin ameliorates motor learning deficits through preserving cerebellar long-term depression pathways in diabetic rats
-
Deng CK, Mu ZH, Miao YH, Liu YD, Zhou L, Huang YJ, Zhang F, Wang YY, Yang ZH, Qian ZY, et al. Gastrodin ameliorates motor learning deficits through preserving cerebellar long-term depression pathways in diabetic rats. Front Neurosci. 2019;13:1239. DOI: 10.3389/fnins.2019.01239
-
(2019)
Front Neurosci
, vol.13
, pp. 1239
-
-
Deng, C.K.1
Mu, Z.H.2
Miao, Y.H.3
Liu, Y.D.4
Zhou, L.5
Huang, Y.J.6
Zhang, F.7
Wang, Y.Y.8
Yang, Z.H.9
Qian, Z.Y.10
-
5
-
-
85080840603
-
Gastrodin Inhibits H2O2-Induced Ferroptosis through Its Antioxidative Effect in Rat Glioma Cell Line C6
-
COI: 1:CAS:528:DC%2BB3cXhvVehu7nN
-
Jiang T, Chu J, Chen H, Cheng H, Su J, Wang X, Cao Y, Tian S, Li Q. Gastrodin Inhibits H2O2-Induced Ferroptosis through Its Antioxidative Effect in Rat Glioma Cell Line C6. Biol Pharm Bull. 2020;43:480–7. DOI: 10.1248/bpb.b19-00824
-
(2020)
Biol Pharm Bull
, vol.43
, pp. 480-487
-
-
Jiang, T.1
Chu, J.2
Chen, H.3
Cheng, H.4
Su, J.5
Wang, X.6
Cao, Y.7
Tian, S.8
Li, Q.9
-
6
-
-
84939992728
-
Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway
-
COI: 1:CAS:528:DC%2BC2MXmslKlsw%3D%3D
-
Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C. Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res. 2015;40:661–73. DOI: 10.1007/s11064-015-1513-5
-
(2015)
Neurochem Res
, vol.40
, pp. 661-673
-
-
Peng, Z.1
Wang, S.2
Chen, G.3
Cai, M.4
Liu, R.5
Deng, J.6
Liu, J.7
Zhang, T.8
Tan, Q.9
Hai, C.10
-
7
-
-
85061060566
-
Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation
-
Hu M, Yan H, Fu Y, Jiang Y, Yao W, Yu S, Zhang L, Wu Q, Ding A, Shan M. Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation. Molecules. 2019;24:547. DOI: 10.3390/molecules24030547
-
(2019)
Molecules
, vol.24
, pp. 547
-
-
Hu, M.1
Yan, H.2
Fu, Y.3
Jiang, Y.4
Yao, W.5
Yu, S.6
Zhang, L.7
Wu, Q.8
Ding, A.9
Shan, M.10
-
8
-
-
85045203045
-
The content analysis of gastrodin and gastrodigenin obtained by different processing methods
-
COI: 1:CAS:528:DC%2BC1cXitlGrsbvE
-
Liu Y, Huang G. The content analysis of gastrodin and gastrodigenin obtained by different processing methods. J Chromatogr Sci. 2018;56:65–7. DOI: 10.1093/chromsci/bmx085
-
(2018)
J Chromatogr Sci
, vol.56
, pp. 65-67
-
-
Liu, Y.1
Huang, G.2
-
9
-
-
84960088215
-
Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes
-
Tsai CC, Wu KM, Chiang TY, Huang CY, Chou CH, Li SJ, Chiang YC. Comparative transcriptome analysis of Gastrodia elata (Orchidaceae) in response to fungus symbiosis to identify gastrodin biosynthesis-related genes. BMC Genomics. 2016;17:212. DOI: 10.1186/s12864-016-2508-6
-
(2016)
BMC Genomics
, vol.17
, pp. 212
-
-
Tsai, C.C.1
Wu, K.M.2
Chiang, T.Y.3
Huang, C.Y.4
Chou, C.H.5
Li, S.J.6
Chiang, Y.C.7
-
10
-
-
84899976199
-
Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
-
COI: 1:CAS:528:DC%2BC2cXivFalsb8%3D
-
Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J. 2014;9:609–20. DOI: 10.1002/biot.201300445
-
(2014)
Biotechnol J
, vol.9
, pp. 609-620
-
-
Borodina, I.1
Nielsen, J.2
-
11
-
-
84955325204
-
De novo biosynthesis of Gastrodin in Escherichia coli
-
COI: 1:CAS:528:DC%2BC28XhtVejtL0%3D
-
Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y. De novo biosynthesis of Gastrodin in Escherichia coli. Metab Eng. 2016;35:138–47. DOI: 10.1016/j.ymben.2016.01.002
-
(2016)
Metab Eng
, vol.35
, pp. 138-147
-
-
Bai, Y.1
Yin, H.2
Bi, H.3
Zhuang, Y.4
Liu, T.5
Ma, Y.6
-
12
-
-
85075345729
-
Building microbial factories for the production of aromatic amino acid pathway derivatives: from commodity chemicals to plant-sourced natural products
-
COI: 1:CAS:528:DC%2BC1MXhvVKkt7nE
-
Cao M, Gao M, Suastegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: from commodity chemicals to plant-sourced natural products. Metab Eng. 2020;58:94–132. DOI: 10.1016/j.ymben.2019.08.008
-
(2020)
Metab Eng
, vol.58
, pp. 94-132
-
-
Cao, M.1
Gao, M.2
Suastegui, M.3
Mei, Y.4
Shao, Z.5
-
13
-
-
85078658435
-
Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC1MXitFSqt7fM
-
Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J. Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. J Agric Food Chem. 2020;68:1015–21. DOI: 10.1021/acs.jafc.9b05218
-
(2020)
J Agric Food Chem
, vol.68
, pp. 1015-1021
-
-
Gao, S.1
Lyu, Y.2
Zeng, W.3
Du, G.4
Zhou, J.5
Chen, J.6
-
14
-
-
85044955242
-
Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies
-
Averesch NJH, Kromer JO. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front Bioeng Biotechnol. 2018;6:32. DOI: 10.3389/fbioe.2018.00032
-
(2018)
Front Bioeng Biotechnol
, vol.6
, pp. 32
-
-
Averesch, N.J.H.1
Kromer, J.O.2
-
15
-
-
85074254948
-
Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
-
COI: 1:CAS:528:DC%2BC1MXitV2qt7vL
-
Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, Chen Y. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat Commun. 2019;10:4976. DOI: 10.1038/s41467-019-12961-5
-
(2019)
Nat Commun
, vol.10
, pp. 4976
-
-
Liu, Q.1
Yu, T.2
Li, X.3
Chen, Y.4
Campbell, K.5
Nielsen, J.6
Chen, Y.7
-
16
-
-
85070188194
-
Yeast systems biology. Model organism and cell factory
-
Nielsen J. Yeast systems biology. Model organism and cell factory. Biotechnol J. 2019;14:e1800421. DOI: 10.1002/biot.201800421
-
(2019)
Biotechnol J.
, vol.14
-
-
Nielsen, J.1
-
17
-
-
0036009873
-
Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics
-
COI: 1:CAS:528:DC%2BD38XisFWhtLw%3D
-
Hefner T, Arend J, Warzecha H, Siems K, Stockigt J. Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics. Bioorg Med Chem. 2002;10:1731–41. DOI: 10.1016/S0968-0896(02)00029-9
-
(2002)
Bioorg Med Chem
, vol.10
, pp. 1731-1741
-
-
Hefner, T.1
Arend, J.2
Warzecha, H.3
Siems, K.4
Stockigt, J.5
-
18
-
-
84908477928
-
In vivo instability of chorismate causes substrate loss during fermentative production of aromatics
-
COI: 1:CAS:528:DC%2BC2cXhtFWhtrzJ
-
Winter G, Averesch NJ, Nunez-Bernal D, Kromer JO. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics. Yeast. 2014;31:333–41. DOI: 10.1002/yea.3025
-
(2014)
Yeast
, vol.31
, pp. 333-341
-
-
Winter, G.1
Averesch, N.J.2
Nunez-Bernal, D.3
Kromer, J.O.4
-
19
-
-
77956251553
-
para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC3cXhtVOnsL3O
-
Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem. 2010;285:27827–38. DOI: 10.1074/jbc.M110.151894
-
(2010)
J Biol Chem
, vol.285
, pp. 27827-27838
-
-
Marbois, B.1
Xie, L.X.2
Choi, S.3
Hirano, K.4
Hyman, K.5
Clarke, C.F.6
-
20
-
-
84872193590
-
Production of aromatics in Saccharomyces cerevisiae–a feasibility study
-
COI: 1:CAS:528:DC%2BC38XntFaitb0%3D
-
Kromer JO, Nunez-Bernal D, Averesch NJ, Hampe J, Varela J, Varela C. Production of aromatics in Saccharomyces cerevisiae–a feasibility study. J Biotechnol. 2013;163:184–93. DOI: 10.1016/j.jbiotec.2012.04.014
-
(2013)
J Biotechnol
, vol.163
, pp. 184-193
-
-
Kromer, J.O.1
Nunez-Bernal, D.2
Averesch, N.J.3
Hampe, J.4
Varela, J.5
Varela, C.6
-
21
-
-
65549118633
-
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae)
-
COI: 1:CAS:528:DC%2BD1MXlvFWiu7g%3D
-
Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–74. DOI: 10.1128/AEM.02681-08
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 2765-2774
-
-
Hansen, E.H.1
Moller, B.L.2
Kock, G.R.3
Bunner, C.M.4
Kristensen, C.5
Jensen, O.R.6
Okkels, F.T.7
Olsen, C.E.8
Motawia, M.S.9
Hansen, J.10
-
22
-
-
0026778048
-
Foreign gene expression in yeast: a review
-
COI: 1:CAS:528:DyaK38XkvVChtbs%3D
-
Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992;8:423–88. DOI: 10.1002/yea.320080602
-
(1992)
Yeast
, vol.8
, pp. 423-488
-
-
Romanos, M.A.1
Scorer, C.A.2
Clare, J.J.3
-
23
-
-
0021028478
-
The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number
-
COI: 1:CAS:528:DyaL2cXjtVejsA%3D%3D
-
Erhart E, Hollenberg CP. The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol. 1983;156:625–35. DOI: 10.1128/JB.156.2.625-635.1983
-
(1983)
J Bacteriol
, vol.156
, pp. 625-635
-
-
Erhart, E.1
Hollenberg, C.P.2
-
24
-
-
85018473092
-
Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli
-
COI: 1:CAS:528:DC%2BC2sXjsF2hsg%3D%3D
-
Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synth Biol. 2017;6:710–20. DOI: 10.1021/acssynbio.6b00350
-
(2017)
ACS Synth Biol.
, vol.6
, pp. 710-720
-
-
Englaender, J.A.1
Jones, J.A.2
Cress, B.F.3
Kuhlman, T.E.4
Linhardt, R.J.5
Koffas, M.A.G.6
-
25
-
-
85062960167
-
Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica
-
COI: 1:CAS:528:DC%2BC1MXhvF2itLw%3D
-
Lv Y, Edwards H, Zhou J, Xu P. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. ACS Synth Biol. 2019;8:568–76. DOI: 10.1021/acssynbio.8b00535
-
(2019)
ACS Synth Biol
, vol.8
, pp. 568-576
-
-
Lv, Y.1
Edwards, H.2
Zhou, J.3
Xu, P.4
-
26
-
-
0031015587
-
High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma
-
COI: 1:CAS:528:DyaK28XntlOgsr8%3D
-
Wery J, Gutker D, Renniers AC, Verdoes JC, van Ooyen AJ. High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene. 1997;184:89–97. DOI: 10.1016/S0378-1119(96)00579-3
-
(1997)
Gene
, vol.184
, pp. 89-97
-
-
Wery, J.1
Gutker, D.2
Renniers, A.C.3
Verdoes, J.C.4
van Ooyen, A.J.5
-
27
-
-
0030019291
-
An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK28XjvVajuw%3D%3D
-
Parekh RN, Shaw MR, Wittrup KD. An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae. Biotechnol Prog. 1996;12:16–21. DOI: 10.1021/bp9500627
-
(1996)
Biotechnol Prog
, vol.12
, pp. 16-21
-
-
Parekh, R.N.1
Shaw, M.R.2
Wittrup, K.D.3
-
28
-
-
84886486790
-
Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
-
Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20C:146–56. DOI: 10.1016/j.ymben.2013.10.004
-
(2013)
Metab Eng
, vol.20C
, pp. 146-156
-
-
Dai, Z.1
Liu, Y.2
Zhang, X.3
Shi, M.4
Wang, B.5
Wang, D.6
Huang, L.7
Zhang, X.8
-
29
-
-
85066404812
-
Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy
-
Wang C, Su X, Sun M, Zhang M, Wu J, Xing J, Wang Y, Xue J, Liu X, Sun W, Chen S. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microb Cell Fact. 2019;18:95. DOI: 10.1186/s12934-019-1138-5
-
(2019)
Microb Cell Fact
, vol.18
, pp. 95
-
-
Wang, C.1
Su, X.2
Sun, M.3
Zhang, M.4
Wu, J.5
Xing, J.6
Wang, Y.7
Xue, J.8
Liu, X.9
Sun, W.10
Chen, S.11
-
30
-
-
85046360125
-
Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose
-
COI: 1:CAS:528:DC%2BC1cXnslKmurs%3D
-
Jiang JJ, Yin H, Wang SA, Zhuang YB, Liu SW, Liu T, Ma YH. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. J Agric Food Chem. 2018;66:4431–8. DOI: 10.1021/acs.jafc.8b01272
-
(2018)
J Agric Food Chem
, vol.66
, pp. 4431-4438
-
-
Jiang, J.J.1
Yin, H.2
Wang, S.A.3
Zhuang, Y.B.4
Liu, S.W.5
Liu, T.6
Ma, Y.H.7
-
31
-
-
84976902235
-
Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC28XhtVyntL7J
-
Suastegui M, Guo W, Feng X, Shao Z. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng. 2016;113:2676–85. DOI: 10.1002/bit.26037
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 2676-2685
-
-
Suastegui, M.1
Guo, W.2
Feng, X.3
Shao, Z.4
-
32
-
-
85012819456
-
Innovating a nonconventional yeast platform for producing shikimate as the building block of high-value aromatics
-
COI: 1:CAS:528:DC%2BC28XhsVOitr%2FJ
-
Gao M, Cao M, Suastegui M, Walker J, Rodriguez Quiroz N, Wu Y, Tribby D, Okerlund A, Stanley L, Shanks JV, Shao Z. Innovating a nonconventional yeast platform for producing shikimate as the building block of high-value aromatics. ACS Synth Biol. 2017;6:29–38. DOI: 10.1021/acssynbio.6b00132
-
(2017)
ACS Synth Biol
, vol.6
, pp. 29-38
-
-
Gao, M.1
Cao, M.2
Suastegui, M.3
Walker, J.4
Rodriguez Quiroz, N.5
Wu, Y.6
Tribby, D.7
Okerlund, A.8
Stanley, L.9
Shanks, J.V.10
Shao, Z.11
-
33
-
-
85087533155
-
Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli which can be applied in generation of aromatic compound-producing strains
-
Koma D, Kishida T, Yoshida E, Ohashi H, Yamanaka H, Moriyoshi K, Nagamori E, Ohmoto T. Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli which can be applied in generation of aromatic compound-producing strains. Appl Environ Microbiol. 2020. 10.1128/AEM.00525-20. DOI: 10.1128/AEM.00525-20
-
(2020)
Appl Environ Microbiol.
-
-
Koma, D.1
Kishida, T.2
Yoshida, E.3
Ohashi, H.4
Yamanaka, H.5
Moriyoshi, K.6
Nagamori, E.7
Ohmoto, T.8
-
34
-
-
0028258205
-
Formation of 4-Hydroxybenzoate in Escherichia Coli Characterization of the Ubic Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase
-
COI: 1:CAS:528:DyaK2cXlsFWrsL0%3D
-
Siebert M, Severin K, Heide L. Formation of 4-Hydroxybenzoate in Escherichia Coli Characterization of the Ubic Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase. Microbiology-Sgm. 1994;140:897–904. DOI: 10.1099/00221287-140-4-897
-
(1994)
Microbiology-Sgm
, vol.140
, pp. 897-904
-
-
Siebert, M.1
Severin, K.2
Heide, L.3
-
35
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
COI: 1:STN:280:DC%2BD387lt1GnsQ%3D%3D
-
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23. DOI: 10.1093/nar/30.6.e23
-
(2002)
Nucleic Acids Res
, vol.30
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
36
-
-
84973410276
-
Rapid and efficient plasmid construction by homologous recombination in yeast
-
Van Leeuwen J, Andrews B, Boone C, Tan G. Rapid and efficient plasmid construction by homologous recombination in yeast. Cold Spring Harb Protoc. 2015;2015:pdb prot085100. DOI: 10.1101/pdb.prot085100
-
(2015)
Cold Spring Harb Protoc.
, vol.2015
-
-
Van Leeuwen, J.1
Andrews, B.2
Boone, C.3
Tan, G.4
|