-
1
-
-
70450181517
-
-
Rochester: University of Rochester Press
-
Brown, Matthew., 2005. Explaining Tonality. Rochester: University of Rochester Press.
-
(2005)
Explaining Tonality
-
-
Brown, M.1
-
2
-
-
61249535580
-
Continuous Transformations
-
Callender, Clifton., 2004. “ Continuous Transformations.” Music Theory Online 10 (3).
-
(2004)
Music Theory Online
, vol.10
, Issue.3
-
-
Callender, C.1
-
3
-
-
42349087211
-
Generalized Voice Leading Spaces
-
Callender, Clifton, Ian, Quinn, and Dmitri, Tymoczko. 2008. “ Generalized Voice Leading Spaces.” Science 320: 346–348. doi: 10.1126/science.1153021
-
(2008)
Science
, vol.320
, pp. 346-348
-
-
Callender, C.1
Quinn, I.2
Tymoczko, D.3
-
4
-
-
60949266789
-
Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions
-
Cohn, Richard., 1996. “ Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions.” Music Analysis 15 (1): 9–40. doi: 10.2307/854168
-
(1996)
Music Analysis
, vol.15
, Issue.1
, pp. 9-40
-
-
Cohn, R.1
-
5
-
-
33745931702
-
Neo-Riemannian Operations, Parsimonious Trichords, and their ‘Tonnetz’ Representations
-
Cohn, Richard., 1997. “ Neo-Riemannian Operations, Parsimonious Trichords, and their ‘Tonnetz’ Representations.” Journal of Music Theory 41 (1): 1–66. doi: 10.2307/843761
-
(1997)
Journal of Music Theory
, vol.41
, Issue.1
, pp. 1-66
-
-
Cohn, R.1
-
6
-
-
61249623449
-
A Tetrahedral Model of Tetrachordal Voice Leading Space
-
Cohn, Richard., 2003. “ A Tetrahedral Model of Tetrachordal Voice Leading Space.” Music Theory Online 9 (4).
-
(2003)
Music Theory Online
, vol.9
, Issue.4
-
-
Cohn, R.1
-
8
-
-
84872174527
-
Tonal Pitch Space and the (Neo-)Riemannian Tonnetz
-
Rehding A., Gollin E., (eds), New York: Oxford University Press,. edited by
-
Cohn, Richard., 2011b. “ Tonal Pitch Space and the (Neo-)Riemannian Tonnetz.” In The Oxford Handbook of Neo-Riemannian Music Theories, edited by Alex, Rehding, and Ed, Gollin, 322–348. New York: Oxford University Press.
-
(2011)
The Oxford Handbook of Neo-Riemannian Music Theories
, pp. 322-348
-
-
Cohn, R.1
-
9
-
-
33745875475
-
Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition
-
Douthett, Jack, and Peter, Steinbach. 1998. “ Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition.” Journal of Music Theory 42 (2): 241–263. doi: 10.2307/843877
-
(1998)
Journal of Music Theory
, vol.42
, Issue.2
, pp. 241-263
-
-
Douthett, J.1
Steinbach, P.2
-
11
-
-
85068554531
-
Pseudo-distances Between Chords of Different Cardinality on Generalized Voice-Leading Spaces
-
Genuys, Grégoire., 2019. “ Pseudo-distances Between Chords of Different Cardinality on Generalized Voice-Leading Spaces.” Journal of Mathematics and Music 13 (3): 193–206. doi: 10.1080/17459737.2019.1622809
-
(2019)
Journal of Mathematics and Music
, vol.13
, Issue.3
, pp. 193-206
-
-
Genuys, G.1
-
12
-
-
60949196367
-
Atonality, Analysis, and the Intentional Fallacy
-
Haimo, Ethan., 1996. “ Atonality, Analysis, and the Intentional Fallacy.” Music Theory Spectrum 18 (2): 167–199. doi: 10.2307/746023
-
(1996)
Music Theory Spectrum
, vol.18
, Issue.2
, pp. 167-199
-
-
Haimo, E.1
-
13
-
-
79959589864
-
Signature Transformations
-
Douthett J., Hyde M.M., Smith C.J., (eds), Rochester: University of Rochester Press,. edited by
-
Hook, Julian., 2008. “ Signature Transformations.” In Music Theory and Mathematics: Chords, Collections, and Transformations, edited by Jack, Douthett, Martha M., Hyde, and Charles J., Smith, 137–160. Rochester: University of Rochester Press.
-
(2008)
Music Theory and Mathematics: Chords, Collections, and Transformations
, pp. 137-160
-
-
Hook, J.1
-
14
-
-
79959596033
-
Spelled Heptachords
-
Agon C., Amiot E., Andreatta M., Assayag G., Bresson J., Mandereau J., (eds), New York: Springer,. edited by
-
Hook, Julian., 2011. “ Spelled Heptachords.” In Mathematics and Computation in Music, Proceedings of the Third International Conference of the Society for Mathematics and Computation in Music, edited by Carlos, Agon, Emmanuel, Amiot, Moreno, Andreatta, Gérard, Assayag, Jean, Bresson, and John, Mandereau, 84–97. New York: Springer.
-
(2011)
Mathematics and Computation in Music, Proceedings of the Third International Conference of the Society for Mathematics and Computation in Music
, pp. 84-97
-
-
Hook, J.1
-
15
-
-
84949032942
-
Using Fundamental Groups and Groupoids of Chord Spaces to Model Voice Leading
-
Collins T., Meredith D., Volk A., (eds), New York: Springer,. edited by
-
Hughes, James., 2015. “ Using Fundamental Groups and Groupoids of Chord Spaces to Model Voice Leading.” In Mathematics and Computation in Music, Proceedings of the 5th International Conference, edited by Tom, Collins, David, Meredith, and Anja, Volk, 267–278. New York: Springer.
-
(2015)
Mathematics and Computation in Music, Proceedings of the 5th International Conference
, pp. 267-278
-
-
Hughes, J.1
-
16
-
-
61249603434
-
Tonal Intuitions in Tristan und Isolde
-
Yale University
-
Hyer, Brian., 1989. “ Tonal Intuitions in Tristan und Isolde.” Ph. D. dissertation, Yale University.
-
(1989)
Ph. D. dissertation
-
-
Hyer, B.1
-
17
-
-
0004181088
-
-
New York: Oxford University Press
-
Lerdahl, Fred., 2001. Tonal Pitch Space. New York: Oxford University Press.
-
(2001)
Tonal Pitch Space
-
-
Lerdahl, F.1
-
18
-
-
84954789847
-
-
Berkeley: University of California Press
-
Lerdahl, Fred., 2020. Composition and Cognition. Berkeley: University of California Press.
-
(2020)
Composition and Cognition
-
-
Lerdahl, F.1
-
20
-
-
0013252375
-
-
Chicago: University of Chicago Press
-
Meyer, Leonard., 1989. Style and Music. Chicago: University of Chicago Press.
-
(1989)
Style and Music
-
-
Meyer, L.1
-
21
-
-
33745897455
-
Voice-Leading Spaces
-
Morris, Robert., 1998. “ Voice-Leading Spaces.” Music Theory Spectrum 20 (2): 175–208. doi: 10.2307/746047
-
(1998)
Music Theory Spectrum
, vol.20
, Issue.2
, pp. 175-208
-
-
Morris, R.1
-
22
-
-
60949251626
-
On Allen Forte’s Theory of Chords
-
Regener, Eric., 1974. “ On Allen Forte’s Theory of Chords.” Perspectives of New Music 13 (1): 191–212. doi: 10.2307/832374
-
(1974)
Perspectives of New Music
, vol.13
, Issue.1
, pp. 191-212
-
-
Regener, E.1
-
23
-
-
70449926307
-
A Theory of Voice Leading for Atonal Music
-
Yale University
-
Roeder, John., 1984. “ A Theory of Voice Leading for Atonal Music.” Ph. D. dissertation, Yale University.
-
(1984)
Ph. D. dissertation
-
-
Roeder, J.1
-
24
-
-
60949532281
-
A Geometric Representation of Pitch-Class Series
-
Roeder, John., 1987. “ A Geometric Representation of Pitch-Class Series.” Perspectives of New Music 25 (1–2): 362–409.
-
(1987)
Perspectives of New Music
, vol.25
, Issue.1-2
, pp. 362-409
-
-
Roeder, J.1
-
25
-
-
85092361674
-
Harmony and Voice Leading in the Rite of Spring
-
Princeton University
-
Russell, Jonathan., 2018. “ Harmony and Voice Leading in the Rite of Spring.” Ph. D dissertation, Princeton University.
-
(2018)
Ph. D dissertation
-
-
Russell, J.1
-
26
-
-
0012635920
-
-
Stein L., (ed), New York: St. Martins Press,. Edited by, Translated by
-
Schoenberg, Arnold., 1975. Style and Idea: Selected Writings of Arnold Schoenberg. Edited by Leonard, Stein, Translated by Leo, Black. New York: St. Martins Press.
-
(1975)
Style and Idea: Selected Writings of Arnold Schoenberg
-
-
Schoenberg, A.1
-
27
-
-
70449881629
-
Neo-Riemannian Transformations and the Harmony of Franz Schubert
-
The University of Chicago
-
Siciliano, Michael., 2002. “ Neo-Riemannian Transformations and the Harmony of Franz Schubert.” Ph.D. dissertation, The University of Chicago.
-
(2002)
Ph.D. dissertation
-
-
Siciliano, M.1
-
28
-
-
58149433367
-
Rational Choice and the Structure of the Environment
-
Simon, Herbert., 1956. “ Rational Choice and the Structure of the Environment.” Psychological Review 63 (2): 129–138. doi: 10.1037/h0042769
-
(1956)
Psychological Review
, vol.63
, Issue.2
, pp. 129-138
-
-
Simon, H.1
-
29
-
-
33745909757
-
Uniformity, Balance, and Smoothness in Atonal Voice Leading
-
Straus, Joseph., 2003. “ Uniformity, Balance, and Smoothness in Atonal Voice Leading.” Music Theory Spectrum 25 (2): 305–352. doi: 10.1525/mts.2003.25.2.305
-
(2003)
Music Theory Spectrum
, vol.25
, Issue.2
, pp. 305-352
-
-
Straus, J.1
-
30
-
-
61249179832
-
Voice Leading in Set-Class Space
-
Straus, Joseph., 2007. “ Voice Leading in Set-Class Space.” Journal of Music Theory 49: 45–108. doi: 10.1215/00222909-2007-002
-
(2007)
Journal of Music Theory
, vol.49
, pp. 45-108
-
-
Straus, J.1
-
31
-
-
79960632165
-
Contextual Inversion Spaces
-
Straus, Joseph., 2011. “ Contextual Inversion Spaces.” Journal of Music Theory 55 (1): 43–88. doi: 10.1215/00222909-1219196
-
(2011)
Journal of Music Theory
, vol.55
, Issue.1
, pp. 43-88
-
-
Straus, J.1
-
32
-
-
67650216439
-
Debussy or Berg? The Mystery of a Chord Progression
-
Stuckenschmidt, Hans Heinz., 1965. “ Debussy or Berg? The Mystery of a Chord Progression.” The Musical Quarterly 51 (3): 453–459. doi: 10.1093/mq/LI.3.453
-
(1965)
The Musical Quarterly
, vol.51
, Issue.3
, pp. 453-459
-
-
Stuckenschmidt, H.H.1
-
33
-
-
33745917405
-
The Geometry of Musical Chords
-
Tymoczko, Dmitri., 2006. “ The Geometry of Musical Chords.” Science 313: 72–74. doi: 10.1126/science.1126287
-
(2006)
Science
, vol.313
, pp. 72-74
-
-
Tymoczko, D.1
-
34
-
-
60949351716
-
Scale Theory, Serial Theory, and Voice Leading
-
Tymoczko, Dmitri., 2008. “ Scale Theory, Serial Theory, and Voice Leading.” Music Analysis 27 (1): 1–49. doi: 10.1111/j.1468-2249.2008.00257.x
-
(2008)
Music Analysis
, vol.27
, Issue.1
, pp. 1-49
-
-
Tymoczko, D.1
-
35
-
-
77958074746
-
Generalizing Musical Intervals
-
Tymoczko, Dmitri., 2009. “ Generalizing Musical Intervals.” Journal of Music Theory 53 (2): 227–254. doi: 10.1215/00222909-2010-003
-
(2009)
Journal of Music Theory
, vol.53
, Issue.2
, pp. 227-254
-
-
Tymoczko, D.1
-
36
-
-
84872185891
-
Geometrical Methods in Recent Music Theory
-
Tymoczko, Dmitri., 2010. “ Geometrical Methods in Recent Music Theory.” Music Theory Online 16 (1). doi: 10.30535/mto.16.1.7
-
(2010)
Music Theory Online
, vol.16
, Issue.1
-
-
Tymoczko, D.1
-
37
-
-
77958037253
-
-
New York: Oxford University Press
-
Tymoczko, Dmitri., 2011. A Geometry of Music. New York: Oxford University Press.
-
(2011)
A Geometry of Music
-
-
Tymoczko, D.1
-
38
-
-
84863494584
-
The Generalized Tonnetz
-
Tymoczko, Dmitri., 2012. “ The Generalized Tonnetz.” Journal of Music Theory 56 (1): 1–52. doi: 10.1215/00222909-1546958
-
(2012)
Journal of Music Theory
, vol.56
, Issue.1
, pp. 1-52
-
-
Tymoczko, D.1
-
39
-
-
85020540554
-
In Quest of Musical Vectors
-
Chew E., Assayag G., Smith J., (eds), Singapore: Imperial College Press/World Scientific,. edited by
-
Tymoczko, Dmitri., 2016. “ In Quest of Musical Vectors.” In Mathemusical Conversations: Mathematics and Computation in Performance and Composition, edited by Elaine, Chew, Gérard, Assayag, and Jordan, Smith, 256–282. Singapore: Imperial College Press/World Scientific.
-
(2016)
Mathemusical Conversations: Mathematics and Computation in Performance and Composition
, pp. 256-282
-
-
Tymoczko, D.1
-
40
-
-
85061118870
-
Intuitive Musical Homotopy
-
Peck R., Montiel M., (eds), Singapore: World Scientific, and,. edited by
-
Tymoczko, Dmitri, and Aditya, Sivakumar. 2018. “ Intuitive Musical Homotopy.” In Mathematical Music Theory, edited by Robert, Peck, and Maria, Montiel, 233–252. Singapore: World Scientific.
-
(2018)
Mathematical Music Theory
, pp. 233-252
-
-
Tymoczko, D.1
Sivakumar, A.2
|