메뉴 건너뛰기




Volumn 14, Issue 2, 2020, Pages 114-169

Why topology?

Author keywords

contextual inversion; geometrical music theory; neo Riemannian theory; Topology; voice leading

Indexed keywords


EID: 85092390698     PISSN: 17459737     EISSN: 17459745     Source Type: Journal    
DOI: 10.1080/17459737.2020.1799563     Document Type: Article
Times cited : (9)

References (40)
  • 1
    • 70450181517 scopus 로고    scopus 로고
    • Rochester: University of Rochester Press
    • Brown, Matthew., 2005. Explaining Tonality. Rochester: University of Rochester Press.
    • (2005) Explaining Tonality
    • Brown, M.1
  • 2
    • 61249535580 scopus 로고    scopus 로고
    • Continuous Transformations
    • Callender, Clifton., 2004. “ Continuous Transformations.” Music Theory Online 10 (3).
    • (2004) Music Theory Online , vol.10 , Issue.3
    • Callender, C.1
  • 3
    • 42349087211 scopus 로고    scopus 로고
    • Generalized Voice Leading Spaces
    • Callender, Clifton, Ian, Quinn, and Dmitri, Tymoczko. 2008. “ Generalized Voice Leading Spaces.” Science 320: 346–348. doi: 10.1126/science.1153021
    • (2008) Science , vol.320 , pp. 346-348
    • Callender, C.1    Quinn, I.2    Tymoczko, D.3
  • 4
    • 60949266789 scopus 로고    scopus 로고
    • Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions
    • Cohn, Richard., 1996. “ Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions.” Music Analysis 15 (1): 9–40. doi: 10.2307/854168
    • (1996) Music Analysis , vol.15 , Issue.1 , pp. 9-40
    • Cohn, R.1
  • 5
    • 33745931702 scopus 로고    scopus 로고
    • Neo-Riemannian Operations, Parsimonious Trichords, and their ‘Tonnetz’ Representations
    • Cohn, Richard., 1997. “ Neo-Riemannian Operations, Parsimonious Trichords, and their ‘Tonnetz’ Representations.” Journal of Music Theory 41 (1): 1–66. doi: 10.2307/843761
    • (1997) Journal of Music Theory , vol.41 , Issue.1 , pp. 1-66
    • Cohn, R.1
  • 6
    • 61249623449 scopus 로고    scopus 로고
    • A Tetrahedral Model of Tetrachordal Voice Leading Space
    • Cohn, Richard., 2003. “ A Tetrahedral Model of Tetrachordal Voice Leading Space.” Music Theory Online 9 (4).
    • (2003) Music Theory Online , vol.9 , Issue.4
    • Cohn, R.1
  • 8
    • 84872174527 scopus 로고    scopus 로고
    • Tonal Pitch Space and the (Neo-)Riemannian Tonnetz
    • Rehding A., Gollin E., (eds), New York: Oxford University Press,. edited by
    • Cohn, Richard., 2011b. “ Tonal Pitch Space and the (Neo-)Riemannian Tonnetz.” In The Oxford Handbook of Neo-Riemannian Music Theories, edited by Alex, Rehding, and Ed, Gollin, 322–348. New York: Oxford University Press.
    • (2011) The Oxford Handbook of Neo-Riemannian Music Theories , pp. 322-348
    • Cohn, R.1
  • 9
    • 33745875475 scopus 로고    scopus 로고
    • Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition
    • Douthett, Jack, and Peter, Steinbach. 1998. “ Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition.” Journal of Music Theory 42 (2): 241–263. doi: 10.2307/843877
    • (1998) Journal of Music Theory , vol.42 , Issue.2 , pp. 241-263
    • Douthett, J.1    Steinbach, P.2
  • 10
    • 65849153203 scopus 로고    scopus 로고
    • Generalized Contextual Groups
    • Fiore, Thomas M., and Ramon, Satyendra. 2005. “ Generalized Contextual Groups.” Music Theory Online 11 (3).
    • (2005) Music Theory Online , vol.11 , Issue.3
    • Fiore, T.M.1    Satyendra, R.2
  • 11
    • 85068554531 scopus 로고    scopus 로고
    • Pseudo-distances Between Chords of Different Cardinality on Generalized Voice-Leading Spaces
    • Genuys, Grégoire., 2019. “ Pseudo-distances Between Chords of Different Cardinality on Generalized Voice-Leading Spaces.” Journal of Mathematics and Music 13 (3): 193–206. doi: 10.1080/17459737.2019.1622809
    • (2019) Journal of Mathematics and Music , vol.13 , Issue.3 , pp. 193-206
    • Genuys, G.1
  • 12
    • 60949196367 scopus 로고    scopus 로고
    • Atonality, Analysis, and the Intentional Fallacy
    • Haimo, Ethan., 1996. “ Atonality, Analysis, and the Intentional Fallacy.” Music Theory Spectrum 18 (2): 167–199. doi: 10.2307/746023
    • (1996) Music Theory Spectrum , vol.18 , Issue.2 , pp. 167-199
    • Haimo, E.1
  • 13
    • 79959589864 scopus 로고    scopus 로고
    • Signature Transformations
    • Douthett J., Hyde M.M., Smith C.J., (eds), Rochester: University of Rochester Press,. edited by
    • Hook, Julian., 2008. “ Signature Transformations.” In Music Theory and Mathematics: Chords, Collections, and Transformations, edited by Jack, Douthett, Martha M., Hyde, and Charles J., Smith, 137–160. Rochester: University of Rochester Press.
    • (2008) Music Theory and Mathematics: Chords, Collections, and Transformations , pp. 137-160
    • Hook, J.1
  • 15
    • 84949032942 scopus 로고    scopus 로고
    • Using Fundamental Groups and Groupoids of Chord Spaces to Model Voice Leading
    • Collins T., Meredith D., Volk A., (eds), New York: Springer,. edited by
    • Hughes, James., 2015. “ Using Fundamental Groups and Groupoids of Chord Spaces to Model Voice Leading.” In Mathematics and Computation in Music, Proceedings of the 5th International Conference, edited by Tom, Collins, David, Meredith, and Anja, Volk, 267–278. New York: Springer.
    • (2015) Mathematics and Computation in Music, Proceedings of the 5th International Conference , pp. 267-278
    • Hughes, J.1
  • 16
    • 61249603434 scopus 로고
    • Tonal Intuitions in Tristan und Isolde
    • Yale University
    • Hyer, Brian., 1989. “ Tonal Intuitions in Tristan und Isolde.” Ph. D. dissertation, Yale University.
    • (1989) Ph. D. dissertation
    • Hyer, B.1
  • 17
    • 0004181088 scopus 로고    scopus 로고
    • New York: Oxford University Press
    • Lerdahl, Fred., 2001. Tonal Pitch Space. New York: Oxford University Press.
    • (2001) Tonal Pitch Space
    • Lerdahl, F.1
  • 18
    • 84954789847 scopus 로고    scopus 로고
    • Berkeley: University of California Press
    • Lerdahl, Fred., 2020. Composition and Cognition. Berkeley: University of California Press.
    • (2020) Composition and Cognition
    • Lerdahl, F.1
  • 20
    • 0013252375 scopus 로고
    • Chicago: University of Chicago Press
    • Meyer, Leonard., 1989. Style and Music. Chicago: University of Chicago Press.
    • (1989) Style and Music
    • Meyer, L.1
  • 21
    • 33745897455 scopus 로고    scopus 로고
    • Voice-Leading Spaces
    • Morris, Robert., 1998. “ Voice-Leading Spaces.” Music Theory Spectrum 20 (2): 175–208. doi: 10.2307/746047
    • (1998) Music Theory Spectrum , vol.20 , Issue.2 , pp. 175-208
    • Morris, R.1
  • 22
    • 60949251626 scopus 로고
    • On Allen Forte’s Theory of Chords
    • Regener, Eric., 1974. “ On Allen Forte’s Theory of Chords.” Perspectives of New Music 13 (1): 191–212. doi: 10.2307/832374
    • (1974) Perspectives of New Music , vol.13 , Issue.1 , pp. 191-212
    • Regener, E.1
  • 23
    • 70449926307 scopus 로고
    • A Theory of Voice Leading for Atonal Music
    • Yale University
    • Roeder, John., 1984. “ A Theory of Voice Leading for Atonal Music.” Ph. D. dissertation, Yale University.
    • (1984) Ph. D. dissertation
    • Roeder, J.1
  • 24
    • 60949532281 scopus 로고
    • A Geometric Representation of Pitch-Class Series
    • Roeder, John., 1987. “ A Geometric Representation of Pitch-Class Series.” Perspectives of New Music 25 (1–2): 362–409.
    • (1987) Perspectives of New Music , vol.25 , Issue.1-2 , pp. 362-409
    • Roeder, J.1
  • 25
    • 85092361674 scopus 로고    scopus 로고
    • Harmony and Voice Leading in the Rite of Spring
    • Princeton University
    • Russell, Jonathan., 2018. “ Harmony and Voice Leading in the Rite of Spring.” Ph. D dissertation, Princeton University.
    • (2018) Ph. D dissertation
    • Russell, J.1
  • 27
    • 70449881629 scopus 로고    scopus 로고
    • Neo-Riemannian Transformations and the Harmony of Franz Schubert
    • The University of Chicago
    • Siciliano, Michael., 2002. “ Neo-Riemannian Transformations and the Harmony of Franz Schubert.” Ph.D. dissertation, The University of Chicago.
    • (2002) Ph.D. dissertation
    • Siciliano, M.1
  • 28
    • 58149433367 scopus 로고
    • Rational Choice and the Structure of the Environment
    • Simon, Herbert., 1956. “ Rational Choice and the Structure of the Environment.” Psychological Review 63 (2): 129–138. doi: 10.1037/h0042769
    • (1956) Psychological Review , vol.63 , Issue.2 , pp. 129-138
    • Simon, H.1
  • 29
    • 33745909757 scopus 로고    scopus 로고
    • Uniformity, Balance, and Smoothness in Atonal Voice Leading
    • Straus, Joseph., 2003. “ Uniformity, Balance, and Smoothness in Atonal Voice Leading.” Music Theory Spectrum 25 (2): 305–352. doi: 10.1525/mts.2003.25.2.305
    • (2003) Music Theory Spectrum , vol.25 , Issue.2 , pp. 305-352
    • Straus, J.1
  • 30
    • 61249179832 scopus 로고    scopus 로고
    • Voice Leading in Set-Class Space
    • Straus, Joseph., 2007. “ Voice Leading in Set-Class Space.” Journal of Music Theory 49: 45–108. doi: 10.1215/00222909-2007-002
    • (2007) Journal of Music Theory , vol.49 , pp. 45-108
    • Straus, J.1
  • 31
    • 79960632165 scopus 로고    scopus 로고
    • Contextual Inversion Spaces
    • Straus, Joseph., 2011. “ Contextual Inversion Spaces.” Journal of Music Theory 55 (1): 43–88. doi: 10.1215/00222909-1219196
    • (2011) Journal of Music Theory , vol.55 , Issue.1 , pp. 43-88
    • Straus, J.1
  • 32
    • 67650216439 scopus 로고
    • Debussy or Berg? The Mystery of a Chord Progression
    • Stuckenschmidt, Hans Heinz., 1965. “ Debussy or Berg? The Mystery of a Chord Progression.” The Musical Quarterly 51 (3): 453–459. doi: 10.1093/mq/LI.3.453
    • (1965) The Musical Quarterly , vol.51 , Issue.3 , pp. 453-459
    • Stuckenschmidt, H.H.1
  • 33
    • 33745917405 scopus 로고    scopus 로고
    • The Geometry of Musical Chords
    • Tymoczko, Dmitri., 2006. “ The Geometry of Musical Chords.” Science 313: 72–74. doi: 10.1126/science.1126287
    • (2006) Science , vol.313 , pp. 72-74
    • Tymoczko, D.1
  • 34
    • 60949351716 scopus 로고    scopus 로고
    • Scale Theory, Serial Theory, and Voice Leading
    • Tymoczko, Dmitri., 2008. “ Scale Theory, Serial Theory, and Voice Leading.” Music Analysis 27 (1): 1–49. doi: 10.1111/j.1468-2249.2008.00257.x
    • (2008) Music Analysis , vol.27 , Issue.1 , pp. 1-49
    • Tymoczko, D.1
  • 35
    • 77958074746 scopus 로고    scopus 로고
    • Generalizing Musical Intervals
    • Tymoczko, Dmitri., 2009. “ Generalizing Musical Intervals.” Journal of Music Theory 53 (2): 227–254. doi: 10.1215/00222909-2010-003
    • (2009) Journal of Music Theory , vol.53 , Issue.2 , pp. 227-254
    • Tymoczko, D.1
  • 36
    • 84872185891 scopus 로고    scopus 로고
    • Geometrical Methods in Recent Music Theory
    • Tymoczko, Dmitri., 2010. “ Geometrical Methods in Recent Music Theory.” Music Theory Online 16 (1). doi: 10.30535/mto.16.1.7
    • (2010) Music Theory Online , vol.16 , Issue.1
    • Tymoczko, D.1
  • 37
    • 77958037253 scopus 로고    scopus 로고
    • New York: Oxford University Press
    • Tymoczko, Dmitri., 2011. A Geometry of Music. New York: Oxford University Press.
    • (2011) A Geometry of Music
    • Tymoczko, D.1
  • 38
    • 84863494584 scopus 로고    scopus 로고
    • The Generalized Tonnetz
    • Tymoczko, Dmitri., 2012. “ The Generalized Tonnetz.” Journal of Music Theory 56 (1): 1–52. doi: 10.1215/00222909-1546958
    • (2012) Journal of Music Theory , vol.56 , Issue.1 , pp. 1-52
    • Tymoczko, D.1
  • 39
    • 85020540554 scopus 로고    scopus 로고
    • In Quest of Musical Vectors
    • Chew E., Assayag G., Smith J., (eds), Singapore: Imperial College Press/World Scientific,. edited by
    • Tymoczko, Dmitri., 2016. “ In Quest of Musical Vectors.” In Mathemusical Conversations: Mathematics and Computation in Performance and Composition, edited by Elaine, Chew, Gérard, Assayag, and Jordan, Smith, 256–282. Singapore: Imperial College Press/World Scientific.
    • (2016) Mathemusical Conversations: Mathematics and Computation in Performance and Composition , pp. 256-282
    • Tymoczko, D.1
  • 40
    • 85061118870 scopus 로고    scopus 로고
    • Intuitive Musical Homotopy
    • Peck R., Montiel M., (eds), Singapore: World Scientific, and,. edited by
    • Tymoczko, Dmitri, and Aditya, Sivakumar. 2018. “ Intuitive Musical Homotopy.” In Mathematical Music Theory, edited by Robert, Peck, and Maria, Montiel, 233–252. Singapore: World Scientific.
    • (2018) Mathematical Music Theory , pp. 233-252
    • Tymoczko, D.1    Sivakumar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.