메뉴 건너뛰기




Volumn 81, Issue 3, 2021, Pages 466-490

Incorporating Uncertainty Into Parallel Analysis for Choosing the Number of Factors via Bayesian Methods

Author keywords

Bayesian analysis; dimensionality assessment; exploratory factor analysis; parallel analysis

Indexed keywords


EID: 85088368099     PISSN: 00131644     EISSN: 15523888     Source Type: Journal    
DOI: 10.1177/0013164420942806     Document Type: Article
Times cited : (4)

References (39)
  • 1
    • 85060294482 scopus 로고    scopus 로고
    • How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions
    • Auerswald M., Moshagen M., (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psychological Methods, 24(4), 468-491. https://doi.org/10.1037/met0000200
    • (2019) Psychological Methods , vol.24 , Issue.4 , pp. 468-491
    • Auerswald, M.1    Moshagen, M.2
  • 2
    • 79957827711 scopus 로고    scopus 로고
    • Sparse Bayesian infinite factor models
    • Bhattacharya A., Dunson D. B., (2011). Sparse Bayesian infinite factor models. Biometrika, 98(2), 291-306. https://doi.org/10.1093/biomet/asr013
    • (2011) Biometrika , vol.98 , Issue.2 , pp. 291-306
    • Bhattacharya, A.1    Dunson, D.B.2
  • 3
    • 0007456042 scopus 로고    scopus 로고
    • Bayesian factor analysis model and choosing the number of factors using a new informational complexity criterion
    • Rizzi A., Vichi M., Bock H.H., (eds), (Eds.), (., -,). Springer
    • Bozdogan H., Shigemasu K., (1998). Bayesian factor analysis model and choosing the number of factors using a new informational complexity criterion. In Rizzi A., Vichi M., Bock H. H., (Eds.), Advances in data science and classification. Studies in classification, data analysis, and knowledge organization (pp. 335-342). Springer. https://doi.org/10.1007/978-3-642-72253-0_45
    • (1998) Advances in data science and classification. Studies in classification, data analysis, and knowledge organization , pp. 335-342
    • Bozdogan, H.1    Shigemasu, K.2
  • 4
    • 0000626398 scopus 로고
    • Remarks on parallel analysis
    • Buja A., Eyuboglu N., (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27(4), 509-540. https://doi.org/10.1207/s15327906mbr2704_2
    • (1992) Multivariate Behavioral Research , vol.27 , Issue.4 , pp. 509-540
    • Buja, A.1    Eyuboglu, N.2
  • 6
    • 0037262421 scopus 로고    scopus 로고
    • A review and evaluation of exploratory factor analysis practices in organizational research
    • Conway J. M., Huffcutt A. I., (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational research methods, 6(2), 147-168. https://doi.org/10.1177/1094428103251541
    • (2003) Organizational research methods , vol.6 , Issue.2 , pp. 147-168
    • Conway, J.M.1    Huffcutt, A.I.2
  • 8
    • 31644441157 scopus 로고    scopus 로고
    • Using confirmatory factor analysis for construct validation: An empirical review
    • DiStefano C., Hess B., (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23(3), 225-241. https://doi.org/10.1177/073428290502300303
    • (2005) Journal of Psychoeducational Assessment , vol.23 , Issue.3 , pp. 225-241
    • DiStefano, C.1    Hess, B.2
  • 9
    • 0039620968 scopus 로고    scopus 로고
    • Evaluating the use of exploratory factor analysis in psychological research
    • Fabrigar L. R., Wegener D. T., MacCallum R. C., Strahan E. J., (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272
    • (1999) Psychological Methods , vol.4 , Issue.3 , pp. 272-299
    • Fabrigar, L.R.1    Wegener, D.T.2    MacCallum, R.C.3    Strahan, E.J.4
  • 10
    • 85021394779 scopus 로고
    • The applications of exploratory factor analysis in applied psychology: A critical review and analysis
    • Ford J. K., MacCallum R. C., Tait M., (1986). The applications of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39(2), 291-314. https://doi.org/10.1111/j.1744-6570.1986.tb00583.x
    • (1986) Personnel Psychology , vol.39 , Issue.2 , pp. 291-314
    • Ford, J.K.1    MacCallum, R.C.2    Tait, M.3
  • 11
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A., Meng X. L., Stern H., (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6(4), 733-807. https://www.jstor.org/stable/24306036
    • (1996) Statistica Sinica , vol.6 , Issue.4 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.3
  • 12
    • 0030539706 scopus 로고    scopus 로고
    • Measuring the pricing error of the arbitrage pricing theory
    • Geweke J., Zhou G., (1996). Measuring the pricing error of the arbitrage pricing theory. Review of Financial Studies, 9(2), 557-587. https://doi.org/10.1093/rfs/9.2.557
    • (1996) Review of Financial Studies , vol.9 , Issue.2 , pp. 557-587
    • Geweke, J.1    Zhou, G.2
  • 13
    • 84973751080 scopus 로고
    • An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain
    • Glorfeld L. W., (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55(3), 377-393. https://doi.org/10.1177/0013164495055003002
    • (1995) Educational and Psychological Measurement , vol.55 , Issue.3 , pp. 377-393
    • Glorfeld, L.W.1
  • 14
    • 84864816565 scopus 로고    scopus 로고
    • A proposed solution to the problem with using completely random data to assess the number of factors with parallel analysis
    • Green S. B., Levy R., Thompson M. S., Lu M., Lo W.-J., (2012). A proposed solution to the problem with using completely random data to assess the number of factors with parallel analysis. Educational and Psychological Measurement, 72(3), 357-374. https://doi.org/10.1177/0013164411422252
    • (2012) Educational and Psychological Measurement , vol.72 , Issue.3 , pp. 357-374
    • Green, S.B.1    Levy, R.2    Thompson, M.S.3    Lu, M.4    Lo, W.-J.5
  • 15
    • 84953432963 scopus 로고    scopus 로고
    • Accuracy of revised and traditional parallel analyses for assessing dimensionality with binary data
    • Green S. B., Redell N., Thompson M. S., Levy R., (2016). Accuracy of revised and traditional parallel analyses for assessing dimensionality with binary data. Educational and Psychological Measurement, 76(1), 5-21. https://doi.org/10.1177/0013164415581898
    • (2016) Educational and Psychological Measurement , vol.76 , Issue.1 , pp. 5-21
    • Green, S.B.1    Redell, N.2    Thompson, M.S.3    Levy, R.4
  • 16
    • 84988305981 scopus 로고    scopus 로고
    • Type I and II error rates and overall accuracy of the revised parallel analysis method for determining the number of factors
    • Green S. B., Thompson M. S., Levy R., Lo W.-J., (2015). Type I and II error rates and overall accuracy of the revised parallel analysis method for determining the number of factors. Educational and Psychological Measurement, 75(3), 428-457. https://doi.org/10.1177/0013164414546566
    • (2015) Educational and Psychological Measurement , vol.75 , Issue.3 , pp. 428-457
    • Green, S.B.1    Thompson, M.S.2    Levy, R.3    Lo, W.-J.4
  • 17
    • 85043360768 scopus 로고    scopus 로고
    • Relative accuracy of two parallel analysis methods that use the proper reference distribution
    • Green S. B., Xu Y., Thompson M. S., (2017). Relative accuracy of two parallel analysis methods that use the proper reference distribution. Educational and Psychological Measurement, 78(4), 589-604. https://doi.org/10.1177/0013164417718610
    • (2017) Educational and Psychological Measurement , vol.78 , Issue.4 , pp. 589-604
    • Green, S.B.1    Xu, Y.2    Thompson, M.S.3
  • 18
    • 85088377318 scopus 로고
    • May, Determining the number of factors by comparing real with random data: A serious flaw and some possible corrections, Annual meeting of the Classification Society of North America, Philadelphia, PA, United States, (,)., [Paper presentation]
    • Harshman R. A., Reddon J. R., (1983, May). Determining the number of factors by comparing real with random data: A serious flaw and some possible corrections [Paper presentation]. Annual meeting of the Classification Society of North America, Philadelphia, PA, United States.
    • (1983)
    • Harshman, R.A.1    Reddon, J.R.2
  • 19
    • 2342495760 scopus 로고    scopus 로고
    • Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis
    • Hayton J. C., Allen D. G., Scarpello V., (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191-205. https://doi.org/10.1177/1094428104263675
    • (2004) Organizational Research Methods , vol.7 , Issue.2 , pp. 191-205
    • Hayton, J.C.1    Allen, D.G.2    Scarpello, V.3
  • 21
    • 0010017776 scopus 로고
    • Note on a criterion for the number of common factors
    • Humphreys L. G., Ilgen D. R., (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29(3), 571-578. https://doi.org/10.1177/001316446902900303
    • (1969) Educational and Psychological Measurement , vol.29 , Issue.3 , pp. 571-578
    • Humphreys, L.G.1    Ilgen, D.R.2
  • 22
    • 85057289936 scopus 로고    scopus 로고
    • Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification
    • Kaufmann S., Schumacher C., (2019). Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification. Journal of Econometrics, 210(1), 116-134. https://doi.org/10.1016/j.jeconom.2018.11.008
    • (2019) Journal of Econometrics , vol.210 , Issue.1 , pp. 116-134
    • Kaufmann, S.1    Schumacher, C.2
  • 23
    • 84928169488 scopus 로고    scopus 로고
    • (Version R package Version 4.6.0
    • Kelley K., (2019). MBESS: The MBESS R Package (Version R package Version 4.6.0). https://CRAN.R-project.org/package=MBESS
    • (2019) MBESS: The MBESS R Package
    • Kelley, K.1
  • 24
    • 85011883610 scopus 로고    scopus 로고
    • The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective
    • Kruschke J. K., Liddell T. M., (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178-206. https://doi.org/10.3758/s13423-016-1221-4
    • (2018) Psychonomic Bulletin & Review , vol.25 , Issue.1 , pp. 178-206
    • Kruschke, J.K.1    Liddell, T.M.2
  • 25
    • 2242448298 scopus 로고    scopus 로고
    • Bayesian selection on the number of factors in a factor analysis model
    • Lee S.-Y., Song X.-Y., (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika, 29(1), 23-39. https://doi.org/10.2333/bhmk.29.23
    • (2002) Behaviormetrika , vol.29 , Issue.1 , pp. 23-39
    • Lee, S.-Y.1    Song, X.-Y.2
  • 26
    • 84855819431 scopus 로고    scopus 로고
    • Bayesian data-model fit assessment for structural equation modeling
    • Levy R., (2011). Bayesian data-model fit assessment for structural equation modeling. Structural Equation Modeling, 18(4), 663-685. https://doi.org/10.1080/10705511.2011.607723
    • (2011) Structural Equation Modeling , vol.18 , Issue.4 , pp. 663-685
    • Levy, R.1
  • 28
    • 85066988233 scopus 로고    scopus 로고
    • Determining the number of factors using parallel analysis and its recent variants
    • Lim S., Jahng S., (2019). Determining the number of factors using parallel analysis and its recent variants. Psychological Methods, 24(4), 452-467. https://doi.org/10.1037/met0000230
    • (2019) Psychological Methods , vol.24 , Issue.4 , pp. 452-467
    • Lim, S.1    Jahng, S.2
  • 29
    • 79961213152 scopus 로고    scopus 로고
    • MCMCpack: Markov chain Monte Carlo in R
    • Martin A. D., Quinn K. M., Park J. H., (2011). MCMCpack: Markov chain Monte Carlo in R. Journal of Statistical Software, 42(9), 1-21. https://doi.org/10.18637/jss.v042.i09
    • (2011) Journal of Statistical Software , vol.42 , Issue.9 , pp. 1-21
    • Martin, A.D.1    Quinn, K.M.2    Park, J.H.3
  • 30
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén B., Asparouhov T., (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335. https://doi.org/10.1037/a0026802
    • (2012) Psychological Methods , vol.17 , Issue.3 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 31
    • 0142168273 scopus 로고    scopus 로고
    • Repairing Tom Swift’s electric factor analysis machine
    • Preacher K. J., MacCallum R. C., (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2(1), 13-43. https://doi.org/10.1207/S15328031US0201_02
    • (2003) Understanding Statistics , vol.2 , Issue.1 , pp. 13-43
    • Preacher, K.J.1    MacCallum, R.C.2
  • 33
    • 84868253616 scopus 로고    scopus 로고
    • The rediscovery of bifactor measurement models
    • Reise S. P., (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696. https://doi.org/10.1080/00273171.2012.715555
    • (2012) Multivariate Behavioral Research , vol.47 , Issue.5 , pp. 667-696
    • Reise, S.P.1
  • 34
    • 77956756020 scopus 로고    scopus 로고
    • Formal relations and an empirical comparison among the bi-factor, the testlet, and a second-order multidimensional IRT model
    • Rijmen F., (2010). Formal relations and an empirical comparison among the bi-factor, the testlet, and a second-order multidimensional IRT model. Journal of Educational Measurement, 47(3), 361-372. https://doi.org/10.1111/j.1745-3984.2010.00118.x
    • (2010) Journal of Educational Measurement , vol.47 , Issue.3 , pp. 361-372
    • Rijmen, F.1
  • 35
    • 85010666571 scopus 로고    scopus 로고
    • Fast Bayesian factor analysis via automatic rotations to sparsity
    • Ročková V., George E. I., (2016). Fast Bayesian factor analysis via automatic rotations to sparsity. Journal of the American Statistical Association, 111(516), 1608-1622. https://doi.org/10.1080/01621459.2015.1100620
    • (2016) Journal of the American Statistical Association , vol.111 , Issue.516 , pp. 1608-1622
    • Ročková, V.1    George, E.I.2
  • 36
    • 79958855301 scopus 로고    scopus 로고
    • Dimensionality assessment of ordered polytomous items with parallel analysis
    • Timmerman M. E., Lorenzo-Seva U., (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220. https://doi.org/10.1037/a0023353
    • (2011) Psychological Methods , vol.16 , Issue.2 , pp. 209-220
    • Timmerman, M.E.1    Lorenzo-Seva, U.2
  • 37
    • 0032363615 scopus 로고    scopus 로고
    • The effect of common variance and structure pattern on random data eigenvalues: Implications for the accuracy of parallel analysis
    • Turner N. E., (1998). The effect of common variance and structure pattern on random data eigenvalues: Implications for the accuracy of parallel analysis. Educational and Psychological Measurement, 58(4), 541-556. https://doi.org/10.1177/0013164498058004001
    • (1998) Educational and Psychological Measurement , vol.58 , Issue.4 , pp. 541-556
    • Turner, N.E.1
  • 38
    • 85043397425 scopus 로고    scopus 로고
    • Proportion of indicator common variance due to a factor as an effect size statistic in revised parallel analysis
    • Xia Y, Green S. B., Xu Y., Thompson M. S., (2018). Proportion of indicator common variance due to a factor as an effect size statistic in revised parallel analysis. Educational and Psychological Measurement, 79(1), 85-107. https://doi.org/10.1177/0013164418754611
    • (2018) Educational and Psychological Measurement , vol.79 , Issue.1 , pp. 85-107
    • Xia, Y.1    Green, S.B.2    Xu, Y.3    Thompson, M.S.4
  • 39
    • 58149371334 scopus 로고
    • Comparison of five rules for determining the number of components to retain
    • Zwick W. R., Velicer W. F., (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442. https://doi.org/10.1037/0033-2909.99.3.432
    • (1986) Psychological Bulletin , vol.99 , Issue.3 , pp. 432-442
    • Zwick, W.R.1    Velicer, W.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.