메뉴 건너뛰기




Volumn , Issue , 2020, Pages

Preventing failures due to dataset shift: Learning predictive models that transport

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SURGERY;

EID: 85085016703     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (134)

References (31)
  • 1
    • 84868282548 scopus 로고    scopus 로고
    • Transportability of causal effects: Completeness results
    • Bareinboim, E. and Pearl, J. (2012). Transportability of causal effects: Completeness results. In AAAI, pages 698-704.
    • (2012) AAAI , pp. 698-704
    • Bareinboim, E.1    Pearl, J.2
  • 3
    • 84922546949 scopus 로고    scopus 로고
    • Event labeling combining ensemble detectors and background knowledge
    • Fanaee-T, H. and Gama, J. (2013). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, pages 1-15.
    • (2013) Progress in Artificial Intelligence , pp. 1-15
    • Fanaee, H.T.1    Gama, J.2
  • 5
    • 70349847999 scopus 로고    scopus 로고
    • Covariate shift by kernel mean matching
    • Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors, chapter 2, The MIT Press
    • Gretton, A., Smola, A. J., Huang, J., Schmittfull, M., Borgwardt, K. M., and Schölkopf, B. (2009). Covariate shift by kernel mean matching. In Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors, Dataset shift in machine learning, chapter 2, pages 131-160. The MIT Press.
    • (2009) Dataset Shift in Machine Learning , pp. 131-160
    • Gretton, A.1    Smola, A.J.2    Huang, J.3    Schmittfull, M.4    Borgwardt, K.M.5    Schölkopf, B.6
  • 8
    • 84990236160 scopus 로고    scopus 로고
    • To predict and serve?
    • Lum, K. and Isaac, W. (2016). To predict and serve? Significance, 13(5):14-19.
    • (2016) Significance , vol.13 , Issue.5 , pp. 14-19
    • Lum, K.1    Isaac, W.2
  • 10
    • 85053155473 scopus 로고    scopus 로고
    • Causality from a distributional robustness point of view
    • Meinshausen, N. (2018). Causality from a distributional robustness point of view. In 2018 IEEE Data Science Workshop (DSW), pages 6-10. IEEE.
    • (2018) 2018 IEEE Data Science Workshop (DSW) , pp. 6-10
    • Meinshausen, N.1
  • 12
    • 70349349170 scopus 로고    scopus 로고
    • Cambridge university press
    • Pearl, J. (2009). Causality. Cambridge university press.
    • (2009) Causality
    • Pearl, J.1
  • 21
    • 33750742436 scopus 로고    scopus 로고
    • Identification of joint interventional distributions in recursive semimarkovian causal models
    • Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semimarkovian causal models. In Proceedings of the National Conference on Artificial Intelligence, volume 21, page 1219.
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.21 , pp. 1219
    • Shpitser, I.1    Pearl, J.2
  • 22
    • 85083954224 scopus 로고    scopus 로고
    • Certifying some distributional robustness with principled adversarial training
    • Sinha, A., Namkoong, H., and Duchi, J. (2018). Certifying some distributional robustness with principled adversarial training. In ICLR.
    • (2018) ICLR
    • Sinha, A.1    Namkoong, H.2    Duchi, J.3
  • 24
    • 80052700798 scopus 로고    scopus 로고
    • When training and test sets are different: Characterizing learning transfer
    • Storkey, A. (2009). When training and test sets are different: characterizing learning transfer. Dataset shift in machine learning, pages 3-28.
    • (2009) Dataset Shift in Machine Learning , pp. 3-28
    • Storkey, A.1
  • 25
    • 85085029323 scopus 로고    scopus 로고
    • Counterfactual normalization: Proactively addressing dataset shift and improving reliability using causal mechanisms
    • Subbaswamy, A. and Saria, S. (2018). Counterfactual normalization: Proactively addressing dataset shift and improving reliability using causal mechanisms. In Uncertainty in Artificial Intelligence.
    • (2018) Uncertainty in Artificial Intelligence
    • Subbaswamy, A.1    Saria, S.2
  • 27
    • 85073233895 scopus 로고    scopus 로고
    • A general identification condition for causal effects
    • Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In AAAI.
    • (2002) AAAI
    • Tian, J.1    Pearl, J.2
  • 29
    • 85056277365 scopus 로고    scopus 로고
    • Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
    • Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., and Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS medicine, 15(11):e1002683.
    • (2018) PLoS Medicine , vol.15 , Issue.11
    • Zech, J.R.1    Badgeley, M.A.2    Liu, M.3    Costa, A.B.4    Titano, J.J.5    Oermann, E.K.6
  • 30
    • 84960107781 scopus 로고    scopus 로고
    • Multisource domain adaptation: A causal view
    • Zhang, K., Gong, M., and Schölkopf, B. (2015). Multisource domain adaptation: A causal view. In AAAI, pages 3150-3157.
    • (2015) AAAI , pp. 3150-3157
    • Zhang, K.1    Gong, M.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.