-
1
-
-
84868282548
-
Transportability of causal effects: Completeness results
-
Bareinboim, E. and Pearl, J. (2012). Transportability of causal effects: Completeness results. In AAAI, pages 698-704.
-
(2012)
AAAI
, pp. 698-704
-
-
Bareinboim, E.1
Pearl, J.2
-
3
-
-
84922546949
-
Event labeling combining ensemble detectors and background knowledge
-
Fanaee-T, H. and Gama, J. (2013). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, pages 1-15.
-
(2013)
Progress in Artificial Intelligence
, pp. 1-15
-
-
Fanaee, H.T.1
Gama, J.2
-
4
-
-
85029312790
-
Domain adaptation with conditional transferable components
-
Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and Schölkopf, B. (2016). Domain adaptation with conditional transferable components. In International Conference on Machine Learning, pages 2839-2848.
-
(2016)
International Conference on Machine Learning
, pp. 2839-2848
-
-
Gong, M.1
Zhang, K.2
Liu, T.3
Tao, D.4
Glymour, C.5
Schölkopf, B.6
-
5
-
-
70349847999
-
Covariate shift by kernel mean matching
-
Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors, chapter 2, The MIT Press
-
Gretton, A., Smola, A. J., Huang, J., Schmittfull, M., Borgwardt, K. M., and Schölkopf, B. (2009). Covariate shift by kernel mean matching. In Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D., editors, Dataset shift in machine learning, chapter 2, pages 131-160. The MIT Press.
-
(2009)
Dataset Shift in Machine Learning
, pp. 131-160
-
-
Gretton, A.1
Smola, A.J.2
Huang, J.3
Schmittfull, M.4
Borgwardt, K.M.5
Schölkopf, B.6
-
8
-
-
84990236160
-
To predict and serve?
-
Lum, K. and Isaac, W. (2016). To predict and serve? Significance, 13(5):14-19.
-
(2016)
Significance
, vol.13
, Issue.5
, pp. 14-19
-
-
Lum, K.1
Isaac, W.2
-
9
-
-
85064819086
-
Domain adaptation by using causal inference to predict invariant conditional distributions
-
Magliacane, S., van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., and Mooij, J. M. (2018). Domain adaptation by using causal inference to predict invariant conditional distributions. In Proceedings of the Thirty-Second Conference on Neural Information Processing Systems.
-
(2018)
Proceedings of the Thirty-Second Conference on Neural Information Processing Systems
-
-
Magliacane, S.1
van Ommen, T.2
Claassen, T.3
Bongers, S.4
Versteeg, P.5
Mooij, J.M.6
-
10
-
-
85053155473
-
Causality from a distributional robustness point of view
-
Meinshausen, N. (2018). Causality from a distributional robustness point of view. In 2018 IEEE Data Science Workshop (DSW), pages 6-10. IEEE.
-
(2018)
2018 IEEE Data Science Workshop (DSW)
, pp. 6-10
-
-
Meinshausen, N.1
-
12
-
-
70349349170
-
-
Cambridge university press
-
Pearl, J. (2009). Causality. Cambridge university press.
-
(2009)
Causality
-
-
Pearl, J.1
-
15
-
-
67149129014
-
-
Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). Dataset shift in machine learning.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
16
-
-
85053382998
-
Invariant models for causal transfer learning
-
Rojas-Carulla, M., Schölkopf, B., Turner, R., and Peters, J. (2018). Invariant models for causal transfer learning. Journal of Machine Learning Research, 19(36).
-
(2018)
Journal of Machine Learning Research
, vol.19
, Issue.36
-
-
Rojas-Carulla, M.1
Schölkopf, B.2
Turner, R.3
Peters, J.4
-
17
-
-
85053156089
-
-
Rothenhäusler, D., Bühlmann, P., Meinshausen, N., and Peters, J. (2018). Anchor regression: heterogeneous data meets causality. arXiv preprint arXiv:1801.06229.
-
(2018)
Anchor Regression: Heterogeneous Data Meets Causality
-
-
Rothenhäusler, D.1
Bühlmann, P.2
Meinshausen, N.3
Peters, J.4
-
18
-
-
84867113617
-
On causal and anticausal learning
-
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and Mooij, J. (2012). On causal and anticausal learning. In International Conference on Machine Learning, pages 459-466.
-
(2012)
International Conference on Machine Learning
, pp. 459-466
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
21
-
-
33750742436
-
Identification of joint interventional distributions in recursive semimarkovian causal models
-
Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semimarkovian causal models. In Proceedings of the National Conference on Artificial Intelligence, volume 21, page 1219.
-
(2006)
Proceedings of the National Conference on Artificial Intelligence
, vol.21
, pp. 1219
-
-
Shpitser, I.1
Pearl, J.2
-
22
-
-
85083954224
-
Certifying some distributional robustness with principled adversarial training
-
Sinha, A., Namkoong, H., and Duchi, J. (2018). Certifying some distributional robustness with principled adversarial training. In ICLR.
-
(2018)
ICLR
-
-
Sinha, A.1
Namkoong, H.2
Duchi, J.3
-
23
-
-
0003614273
-
-
MIT press
-
Spirtes, P., Glymour, C. N., Scheines, R., Heckerman, D., Meek, C., Cooper, G., and Richardson, T. (2000). Causation, prediction, and search. MIT press.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
Heckerman, D.4
Meek, C.5
Cooper, G.6
Richardson, T.7
-
24
-
-
80052700798
-
When training and test sets are different: Characterizing learning transfer
-
Storkey, A. (2009). When training and test sets are different: characterizing learning transfer. Dataset shift in machine learning, pages 3-28.
-
(2009)
Dataset Shift in Machine Learning
, pp. 3-28
-
-
Storkey, A.1
-
25
-
-
85085029323
-
Counterfactual normalization: Proactively addressing dataset shift and improving reliability using causal mechanisms
-
Subbaswamy, A. and Saria, S. (2018). Counterfactual normalization: Proactively addressing dataset shift and improving reliability using causal mechanisms. In Uncertainty in Artificial Intelligence.
-
(2018)
Uncertainty in Artificial Intelligence
-
-
Subbaswamy, A.1
Saria, S.2
-
26
-
-
34249047899
-
Covariate shift adaptation by importance weighted cross validation
-
May
-
Sugiyama, M., Krauledat, M., and MÞller, K.-R. (2007). Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research, 8(May):985-1005.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 985-1005
-
-
Sugiyama, M.1
Krauledat, M.2
MÞller, K.-R.3
-
27
-
-
85073233895
-
A general identification condition for causal effects
-
Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In AAAI.
-
(2002)
AAAI
-
-
Tian, J.1
Pearl, J.2
-
29
-
-
85056277365
-
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
-
Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., and Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS medicine, 15(11):e1002683.
-
(2018)
PLoS Medicine
, vol.15
, Issue.11
-
-
Zech, J.R.1
Badgeley, M.A.2
Liu, M.3
Costa, A.B.4
Titano, J.J.5
Oermann, E.K.6
-
30
-
-
84960107781
-
Multisource domain adaptation: A causal view
-
Zhang, K., Gong, M., and Schölkopf, B. (2015). Multisource domain adaptation: A causal view. In AAAI, pages 3150-3157.
-
(2015)
AAAI
, pp. 3150-3157
-
-
Zhang, K.1
Gong, M.2
Schölkopf, B.3
-
31
-
-
84898934392
-
Domain adaptation under target and conditional shift
-
Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. (2013). Domain adaptation under target and conditional shift. In International Conference on Machine Learning, pages 819-827.
-
(2013)
International Conference on Machine Learning
, pp. 819-827
-
-
Zhang, K.1
Schölkopf, B.2
Muandet, K.3
Wang, Z.4
|