메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Sparse similarity-preserving hashing

Author keywords

[No Author keywords available]

Indexed keywords

CODES (SYMBOLS); DEGREES OF FREEDOM (MECHANICS); ECONOMIC AND SOCIAL EFFECTS; HASH FUNCTIONS; NEAREST NEIGHBOR SEARCH;

EID: 85083952582     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (39)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M. and Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6):1373–1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 77955989956 scopus 로고    scopus 로고
    • Data fusion through cross-modality metric learning using similarity-sensitive hashing
    • Bronstein, M. M. et al. Data fusion through cross-modality metric learning using similarity-sensitive hashing. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Bronstein, M.M.1
  • 3
    • 72249085330 scopus 로고    scopus 로고
    • NUS-Wide: A real-world web image database from national university of singapore
    • Chua, T.-S. et al. NUS-WIDE: A real-world web image database from national university of Singapore. In Proc. CIVR, 2009.
    • (2009) Proc. CIVR
    • Chua, T.-S.1
  • 5
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies, I., Defrise, M., and De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure and App. Math., 57 (11):1413–1457, 2004.
    • (2004) Comm. Pure and App. Math. , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 6
    • 51949118036 scopus 로고    scopus 로고
    • Information-theoretic metric learning
    • Davis et al. Information-theoretic metric learning. In Proc. ICML, 2007.
    • (2007) Proc. ICML
    • Davis1
  • 7
    • 0001944742 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • Gionis, A., Indyk, P., and Motwani, R. Similarity search in high dimensions via hashing. In Proc. VLDB, 1999.
    • (1999) Proc. VLDB
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 8
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M. and Williamson, D. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.
    • (1995) J. ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.1    Williamson, D.2
  • 9
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A pro-crustean approach to learning binary codes
    • Gong, Y. and Lazebnik, S. Iterative quantization: A pro-crustean approach to learning binary codes. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Gong, Y.1    Lazebnik, S.2
  • 10
    • 85059656906 scopus 로고    scopus 로고
    • Angular quantization-based binary codes for fast similarity search
    • Gong, Y. et al. Angular quantization-based binary codes for fast similarity search. In Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Gong, Y.1
  • 11
    • 84867496527 scopus 로고    scopus 로고
    • Learning binary hash codes for large-scale image search
    • Springer
    • Grauman, K. and Fergus, R. Learning binary hash codes for large-scale image search. In Machine Learning for Computer Vision, pp. 49–87. Springer, 2013.
    • (2013) Machine Learning for Computer Vision , pp. 49-87
    • Grauman, K.1    Fergus, R.2
  • 12
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, 2010.
    • (2010) ICML
    • Gregor, K.1    LeCun, Y.2
  • 13
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 15
    • 84856670335 scopus 로고    scopus 로고
    • Coherency sensitive hashing
    • Korman, S. and Avidan, S. Coherency sensitive hashing. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Korman, S.1    Avidan, S.2
  • 17
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • Kulis, B. and Darrell, T. Learning to hash with binary reconstructive embeddings. In Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Kulis, B.1    Darrell, T.2
  • 18
    • 0000134812 scopus 로고
    • Une procédure d’apprentissage pour réseau à seuil asymétrique
    • Paris
    • LeCun, Y. Une procédure d’apprentissage pour réseau à seuil asymétrique. Proceedings of Cognitiva 85, Paris, pp. 599–604, 1985.
    • (1985) Proceedings of Cognitiva , vol.85 , pp. 599-604
    • LeCun, Y.1
  • 19
    • 84884202727 scopus 로고    scopus 로고
    • Hashing with graphs
    • Liu, W. et al. Hashing with graphs. In Proc. ICML, 2011.
    • (2011) Proc. ICML
    • Liu, W.1
  • 20
    • 84866726818 scopus 로고    scopus 로고
    • Supervised hashing with kernels
    • Liu, Wei et al. Supervised hashing with kernels. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Liu, W.1
  • 22
    • 71149114630 scopus 로고    scopus 로고
    • Partial order embedding with multiple kernels
    • McFee, B. and Lanckriet, G. R. G. Partial order embedding with multiple kernels. In Proc. ICML, 2009.
    • (2009) Proc. ICML
    • McFee, B.1    Lanckriet, G.R.G.2
  • 24
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • Norouzi, M. and Fleet, D. Minimal loss hashing for compact binary codes. In Proc. ICML, 2011.
    • (2011) Proc. ICML
    • Norouzi, M.1    Fleet, D.2
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T. and Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323
    • Roweis, S.T.1    Saul, L.K.2
  • 28
    • 77956001488 scopus 로고    scopus 로고
    • Fast pose estimation with parameter-sensitive hashing
    • Shakhnarovich, G., Viola, P., and Darrell, T. Fast pose estimation with parameter-sensitive hashing. In Proc. CVPR, 2003.
    • (2003) Proc. CVPR
    • Shakhnarovich, G.1    Viola, P.2    Darrell, T.3
  • 29
    • 84866870936 scopus 로고    scopus 로고
    • Positive semidefinite metric learning with boosting
    • Shen, C. et al. Positive semidefinite metric learning with boosting. In Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Shen, C.1
  • 31
    • 81855191888 scopus 로고    scopus 로고
    • LDahash: Improved matching with smaller descriptors
    • Strecha, C. et al. LDAHash: Improved matching with smaller descriptors. PAMI, 34(1):66–78, 2012.
    • (2012) PAMI , vol.34 , Issue.1 , pp. 66-78
    • Strecha, C.1
  • 32
    • 80052908982 scopus 로고    scopus 로고
    • Learning invariance through imitation
    • Taylor, G. W. et al. Learning invariance through imitation. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Taylor, G.W.1
  • 33
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • Torralba, A., Fergus, R., and Freeman, W. T. 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI, 30(11):1958–1970, 2008a.
    • (2008) PAMI , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 34
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • Torralba, A., Fergus, R., and Weiss, Y. Small codes and large image databases for recognition. In Proc. CVPR, 2008b.
    • (2008) Proc. CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 35
    • 77956496400 scopus 로고    scopus 로고
    • Sequential projection learning for hashing with compact codes
    • Wang, J., Kumar, S., and Chang, S.-F. Sequential projection learning for hashing with compact codes. In Proc. ICML, 2010.
    • (2010) Proc. ICML
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 36
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger, K. Q. and Saul, L. K. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207–244, 2009.
    • (2009) JMLR , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 38
    • 1942417984 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • Xing, E. P. et al. Distance metric learning with application to clustering with side-information. In Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • Xing, E.P.1
  • 39
    • 85070901008 scopus 로고    scopus 로고
    • The power of comparative reasoning
    • Yagnik, J. et al. The power of comparative reasoning. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Yagnik, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.