메뉴 건너뛰기




Volumn , Issue , 2014, Pages 49-60

Making state explicit for imperative big data processing

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; DATA FLOW ANALYSIS; DATA HANDLING; FAULT TOLERANCE; JAVA PROGRAMMING LANGUAGE; LEARNING ALGORITHMS; MACHINE LEARNING; MATLAB; SEMANTICS;

EID: 85077469444     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (57)

References (40)
  • 1
    • 84891087050 scopus 로고    scopus 로고
    • Millwheel: Fault-tolerant stream processing at internet scale
    • AKIDAU, T., BALIKOV, A., ET AL. MillWheel: Fault-Tolerant Stream Processing at Internet Scale. In VLDB (2013).
    • (2013) VLDB
    • Akidau, T.1    Balikov, A.2
  • 2
    • 84901777009 scopus 로고    scopus 로고
    • Blazes: Coordination analysis for distributed programs
    • ALVARO, P., CONWAY, N., ET AL. Blazes: Coordination Analysis for Distributed Programs. In ICDE (2014).
    • (2014) ICDE
    • Alvaro, P.1    Conway, N.2
  • 3
    • 84980321229 scopus 로고
    • From control flow to dataflow
    • BECK, M., AND PINGALI, K. From Control Flow to Dataflow. In ICPP (1990).
    • (1990) ICPP
    • Beck, M.1    Pingali, K.2
  • 4
    • 82155187187 scopus 로고    scopus 로고
    • InCOOP: MapReduce for incremental computations
    • BHATOTIA, P., WIEDER, A., ET AL. Incoop: MapReduce for Incremental Computations. In SOCC (2011).
    • (2011) SOCC
    • Bhatotia, P.1    Wieder, A.2
  • 5
    • 79956351190 scopus 로고    scopus 로고
    • Haloop: Efficient iterative data processing on large clusters
    • BU, Y., HOWE, B., ET AL. HaLoop: Efficient Iterative Data Processing on Large Clusters. In VLDB (2010).
    • (2010) VLDB
    • Bu, Y.1    Howe, B.2
  • 6
    • 84860560293 scopus 로고    scopus 로고
    • SCOPE: Easy and efficient parallel processing of massive data sets
    • CHAIKEN, R., JENKINS, B., ET AL. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In VLDB (2008).
    • (2008) VLDB
    • Chaiken, R.1    Jenkins, B.2
  • 7
    • 77954727236 scopus 로고    scopus 로고
    • Flumejava: Easy, efficient data-parallel pipelines
    • CHAMBERS, C., RANIWALA, A., ET AL. FlumeJava: Easy, Efficient Data-Parallel Pipelines. In PLDI (2010).
    • (2010) PLDI
    • Chambers, C.1    Raniwala, A.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on Large Clusters. In CACM (2008).
    • (2008) CACM
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 84870501280 scopus 로고    scopus 로고
    • Spinning fast iterative data flows
    • EWEN, S., TZOUMAS, K., ET AL. Spinning Fast Iterative Data Flows. In VLDB (2012).
    • (2012) VLDB
    • Ewen, S.1    Tzoumas, K.2
  • 10
    • 84880553720 scopus 로고    scopus 로고
    • Integrating scale out and fault tolerance in stream processing using operator state Management
    • FERNANDEZ, R. C., MIGLIAVACCA, M., ET AL. Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management. In SIGMOD (2013).
    • (2013) SIGMOD
    • Fernandez, R.C.1    Migliavacca, M.2
  • 11
    • 80053143612 scopus 로고    scopus 로고
    • NeCTAR: Automatic management of data and comp. In datacenters
    • GUNDA, P. K., RAVINDRANATH, L., ET AL. Nectar: Automatic Management of Data and Comp. in Datacenters. In OSDI (2010).
    • (2010) OSDI
    • Gunda, P.K.1    Ravindranath, L.2
  • 12
    • 85080660712 scopus 로고    scopus 로고
    • CoMET: Batched stream processing for data intensive distributed computing
    • HE, B., YANG, M., ET AL. Comet: Batched Stream Processing for Data Intensive Distributed Computing. In SOCC (2010).
    • (2010) SOCC
    • He, B.1    Yang, M.2
  • 13
    • 84873187154 scopus 로고    scopus 로고
    • Opening the black boxes in data flow optimization
    • HUESKE, F., PETERS, M., ET AL. Opening the Black Boxes in Data Flow Optimization. In VLDB (2012).
    • (2012) VLDB
    • Hueske, F.1    Peters, M.2
  • 14
    • 28444451839 scopus 로고    scopus 로고
    • High-availability algorithms for distributed stream processing
    • HWANG, J.-H., BALAZINSKA, M., ET AL. High-Availability Algorithms for Distributed Stream Processing. In ICDE (2005).
    • (2005) ICDE
    • Hwang, J.-H.1    Balazinska, M.2
  • 15
    • 35448961922 scopus 로고    scopus 로고
    • Dryad: Dist. Data-parallel programs from sequential building blocks
    • ISARD, M., BUDIU, M., ET AL. Dryad: Dist. Data-Parallel Programs from Sequential Building Blocks. In EuroSys (2007).
    • (2007) EuroSys
    • Isard, M.1    Budiu, M.2
  • 16
    • 85080650666 scopus 로고    scopus 로고
    • Advances in dataflow programming languages
    • JOHNSTON, W. M., HANNA, J., ET AL. Advances in Dataflow Programming Languages. In CSUR (2004).
    • (2004) CSUR
    • Johnston, W.M.1    Hanna, J.2
  • 18
    • 84865738000 scopus 로고    scopus 로고
    • Automatic extraction of coarse-grained data-flow threads from imperative programs
    • LI, F., POP, A., ET AL. Automatic Extraction of Coarse-Grained Data-Flow Threads from Imperative Programs. In Micro (2012).
    • (2012) Micro
    • Li, F.1    Pop, A.2
  • 19
    • 80051931078 scopus 로고    scopus 로고
    • Stateful bulk processing for incremental analytics
    • LOGOTHETHIS, D., OLSON, C., ET AL. Stateful Bulk Processing for Incremental Analytics. In SOCC (2010).
    • (2010) SOCC
    • Logothethis, D.1    Olson, C.2
  • 20
    • 84988256865 scopus 로고    scopus 로고
    • Dist. Graphlab: A framework for ML and data mining in the cloud
    • LOW, Y., BICKSON, D., ET AL. Dist. GraphLab: A Framework for ML and Data Mining in the Cloud. In VLDB (2012).
    • (2012) VLDB
    • Low, Y.1    Bickson, D.2
  • 21
    • 71149108237 scopus 로고    scopus 로고
    • Identifying suspicious URLs: An application of large-scale online learning
    • MA, J., SAUL, L. K., ET AL. Identifying Suspicious URLs: an Application of Large-Scale Online Learning. In ICML (2009).
    • (2009) ICML
    • Ma, J.1    Saul, L.K.2
  • 22
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: A System for Large-scale graph processing
    • MALEWICZ, G., AUSTERN, M. H., ET AL. Pregel: A System for Large-scale Graph Processing. In SIGMOD (2010).
    • (2010) SIGMOD
    • Malewicz, G.1    Austern, M.H.2
  • 23
    • 84880559221 scopus 로고    scopus 로고
    • Fast data in the era of big data: Twitter's real-time related query suggestion architecture
    • MISHNE, G., DALTON, J., ET AL. Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture. In SIGMOD (2013).
    • (2013) SIGMOD
    • Mishne, G.1    Dalton, J.2
  • 24
    • 84866990039 scopus 로고    scopus 로고
    • Oolong: Asynchronous distributed applications made easy
    • MITCHELL, C., POWER, R., ET AL. Oolong: Asynchronous Distributed Applications Made Easy. In APSYS (2012).
    • (2012) APSYS
    • Mitchell, C.1    Power, R.2
  • 25
    • 84862779280 scopus 로고    scopus 로고
    • CIEL: A universal exec. Engine for distributed data-flow comp
    • MURRAY, D., SCHWARZKOPF, M., ET AL. CIEL: A Universal Exec. Engine for Distributed Data-Flow Comp. In NSDI (2011).
    • (2011) NSDI
    • Murray, D.1    Schwarzkopf, M.2
  • 26
    • 84889658377 scopus 로고    scopus 로고
    • Naiad: A timely dataflow system
    • MURRAY, D. G., MCSHERRY, F., ET AL. Naiad: A Timely Dataflow System. In SOSP (2013).
    • (2013) SOSP
    • Murray, D.G.1    McSherry, F.2
  • 27
    • 85080790231 scopus 로고
    • Executing a program on the MIT tagged-token dataflow architecture
    • NIKHIL, R. S., ET AL. Executing a Program on the MIT Tagged-Token Dataflow Architecture. In TC (1990).
    • (1990) TC
    • Nikhil, R.S.1
  • 28
    • 55349148888 scopus 로고    scopus 로고
    • Pig Latin: A not-so-foreign language for data processing
    • OLSTON, C., REED, B., ET AL. Pig Latin: A Not-So-Foreign Language for Data Processing. In SIGMOD (2008).
    • (2008) SIGMOD
    • Olston, C.1    Reed, B.2
  • 29
    • 82655162815 scopus 로고    scopus 로고
    • Fast crash recovery in Ramcloud
    • ONGARO, D., RUMBLE, S. M., ET AL. Fast Crash Recovery in RAMcloud. In SOSP (2011).
    • (2011) SOSP
    • Ongaro, D.1    Rumble, S.M.2
  • 30
    • 84862798988 scopus 로고    scopus 로고
    • Piccolo: Building fast, distributed programs with partitioned tables
    • POWER, R., AND LI, J. Piccolo: Building Fast, Distributed Programs with Partitioned Tables. In OSDI (2010).
    • (2010) OSDI
    • Power, R.1    Li, J.2
  • 31
    • 84889563336 scopus 로고    scopus 로고
    • All roads lead to Rome: Optimistic recovery for distributed iterative data processing
    • SCHELTER, S., EWEN, S., ET AL. All Roads Lead to Rome: Optimistic Recovery for Distributed Iterative Data Processing. In CIKM (2013).
    • (2013) CIKM
    • Schelter, S.1    Ewen, S.2
  • 32
    • 84880545553 scopus 로고    scopus 로고
    • The big data ecosystem at LinkedIn
    • SUMBALY, R., KREPS, J., ET AL. The Big Data Ecosystem at LinkedIn. In SIGMOD (2013).
    • (2013) SIGMOD
    • Sumbaly, R.1    Kreps, J.2
  • 33
    • 0001956132 scopus 로고    scopus 로고
    • Soot: A Java optimization framework
    • VALLÉE-RAI, R., HENDREN, L., ET AL. Soot: A Java Optimization Framework. In CASCON (1999).
    • (1999) CASCON
    • Vallée-Rai, R.1    Hendren, L.2
  • 34
    • 78149234962 scopus 로고    scopus 로고
    • The paralax infrastructure: Automatic parallelization with a helping hand
    • VANDIERENDONCK, H., RUL, S., ET AL. The Paralax Infrastructure: Automatic Parallelization with a Helping Hand. In PACT (2010).
    • (2010) PACT
    • Vandierendonck, H.1    Rul, S.2
  • 35
    • 85080792643 scopus 로고    scopus 로고
    • Presto: Dist. ML and graph processing with sparse matrices
    • VENKATARAMAN, S., BODZSAR, E., ET AL. Presto: Dist. ML and Graph Processing with Sparse Matrices. In EuroSys (2013).
    • (2013) EuroSys
    • Venkataraman, S.1    Bodzsar, E.2
  • 36
    • 84880533620 scopus 로고    scopus 로고
    • Shark: SQL and rich analytics at scale
    • XIN, R. S., ROSEN, J., ET AL. Shark: SQL and Rich Analytics at Scale. In SIGMOD (2013).
    • (2013) SIGMOD
    • Xin, R.S.1    Rosen, J.2
  • 37
    • 70350591395 scopus 로고    scopus 로고
    • Dryadlinq: A System for General-purpose distributed Data-parallel computing using a High-level language
    • YU, Y., ISARD, M., ET AL. DryadLINQ: a System for General-Purpose Distributed Data-Parallel Computing using a High-Level Language. In OSDI (2008).
    • (2008) OSDI
    • Yu, Y.1    Isard, M.2
  • 38
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • ZAHARIA, M., CHOWDHURY, M., ET AL. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI (2012).
    • (2012) NSDI
    • Zaharia, M.1    Chowdhury, M.2
  • 39
    • 84889637396 scopus 로고    scopus 로고
    • Discretized streams: Fault-tolerant streaming computation at Scale
    • ZAHARIA, M., DAS, T., ET AL. Discretized Streams: Fault-tolerant Streaming Computation at Scale. In SOSP (2013).
    • (2013) SOSP
    • Zaharia, M.1    Das, T.2
  • 40
    • 63649104440 scopus 로고    scopus 로고
    • Improving mapreduce performance in heterogeneous environments
    • ZAHARIA, M., KONWINSKI, A., ET AL. Improving MapReduce Performance in Heterogeneous Environments. In OSDI (2008).
    • (2008) OSDI
    • Zaharia, M.1    Konwinski, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.