-
1
-
-
85053019174
-
Potential biases in machine learning algorithms using electronic health record data
-
doi: 30128552
-
Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018; 178 (11): 1544-1547. doi: 10.1001/jamainternmed.2018.3763 30128552
-
(2018)
JAMA Intern Med
, vol.178
, Issue.11
, pp. 1544-1547
-
-
Gianfrancesco, M.A.1
Tamang, S.2
Yazdany, J.3
Schmajuk, G.4
-
2
-
-
84940062157
-
Race/ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events
-
e0132321. doi: 26134404
-
Gijsberts CM, Groenewegen KA, Hoefer IE, Race/ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events. PLoS One. 2015; 10 (7):
-
(2015)
PLoS One
, vol.10
, Issue.7
-
-
Gijsberts, C.M.1
Groenewegen, K.A.2
Hoefer, I.E.3
-
3
-
-
37149043465
-
Symptom presentation of women with acute coronary syndromes: Myth vs reality
-
doi: 18071161
-
Canto JG, Goldberg RJ, Hand MM, Symptom presentation of women with acute coronary syndromes: myth vs reality. Arch Intern Med. 2007; 167 (22): 2405-2413. doi: 10.1001/archinte.167.22.2405 18071161
-
(2007)
Arch Intern Med
, vol.167
, Issue.22
, pp. 2405-2413
-
-
Canto, J.G.1
Goldberg, R.J.2
Hand, M.M.3
-
4
-
-
85046254953
-
Biases in electronic health record data due to processes within the healthcare system: Retrospective observational study
-
doi: 29712648
-
Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ. 2018; 361: k1479. doi: 10.1136/bmj.k1479 29712648
-
(2018)
BMJ
, vol.361
, pp. k1479
-
-
Agniel, D.1
Kohane, I.S.2
Weber, G.M.3
-
5
-
-
84979500451
-
Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer
-
doi: 27161971
-
McCarthy AM, Bristol M, Domchek SM, Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. J Clin Oncol. 2016; 34 (22): 2610-2618. doi: 10.1200/JCO.2015.66.0019 27161971
-
(2016)
J Clin Oncol
, vol.34
, Issue.22
, pp. 2610-2618
-
-
McCarthy, A.M.1
Bristol, M.2
Domchek, S.M.3
-
6
-
-
77958470996
-
Complacency and bias in human use of automation: An attentional integration
-
doi: 21077562
-
Parasuraman R, Manzey DH. Complacency and bias in human use of automation: an attentional integration. Hum Factors. 2010; 52 (3): 381-410. doi: 10.1177/0018720810376055 21077562
-
(2010)
Hum Factors
, vol.52
, Issue.3
, pp. 381-410
-
-
Parasuraman, R.1
Manzey, D.H.2
-
7
-
-
85061962448
-
Can AI help reduce disparities in general medical and mental health care?
-
doi: 30794127
-
Chen IY, Szolovits P, Ghassemi M. Can AI help reduce disparities in general medical and mental health care? AMA J Ethics. 2019; 21 (2): E167-E179. doi: 10.1001/amajethics.2019.167 30794127
-
(2019)
AMA J Ethics
, vol.21
, Issue.2
, pp. E167-E179
-
-
Chen, I.Y.1
Szolovits, P.2
Ghassemi, M.3
-
8
-
-
85059267182
-
PROBAST: A tool to assess the risk of bias and applicability of prediction model studies
-
doi: 30596875
-
Wolff RF, Moons KGM, Riley RD,; PROBAST Group. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019; 170 (1): 51-58. doi: 10.7326/M18-1376 30596875
-
(2019)
Ann Intern Med
, vol.170
, Issue.1
, pp. 51-58
-
-
Wolff, R.F.1
Moons, K.G.M.2
Riley, R.D.3
|