메뉴 건너뛰기




Volumn 23, Issue 12, 2019, Pages

Microfluidics approach to investigate foam hysteretic behaviour

Author keywords

Foam; Hysteresis; Microfluidics; Retardation

Indexed keywords

FOAMS; HYSTERESIS; MICROFLUIDICS; RECOVERY; SODIUM COMPOUNDS; SULFUR COMPOUNDS; VISCOSITY;

EID: 85075044122     PISSN: 16134982     EISSN: 16134990     Source Type: Journal    
DOI: 10.1007/s10404-019-2299-6     Document Type: Article
Times cited : (10)

References (47)
  • 1
    • 85017549242 scopus 로고    scopus 로고
    • Highly ordered biobased scaffolds: from liquid to solid foams
    • Andrieux S, Drenckhan W, Stubenrauch C (2017) Highly ordered biobased scaffolds: from liquid to solid foams. Polymer. 10.1016/j.polymer.2017.04.031
    • (2017) Polymer
    • Andrieux, S.1    Drenckhan, W.2    Stubenrauch, C.3
  • 2
    • 85041439213 scopus 로고    scopus 로고
    • Generation of solid foams with controlled polydispersity using microfluidics
    • Andrieux S, Drenckhan W, Stubenrauch C (2018) Generation of solid foams with controlled polydispersity using microfluidics. Langmuir. 10.1021/acs.langmuir.7b03602
    • (2018) Langmuir
    • Andrieux, S.1    Drenckhan, W.2    Stubenrauch, C.3
  • 4
    • 77954116553 scopus 로고    scopus 로고
    • Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions
    • Bauer WAC et al (2010) Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip Miniat Chem Biol 10:1814–1819. 10.1039/c004046k
    • (2010) Lab Chip Miniat Chem Biol , vol.10 , pp. 1814-1819
    • Bauer, W.A.C.1
  • 5
    • 0001434234 scopus 로고    scopus 로고
    • Time-dependent and flow properties of foams
    • Bekkour K, Scrivener O (1998) Time-dependent and flow properties of foams. Mech Time-Depend Mater 2:171–193. 10.1023/a:1009841625668LB-Bekkour
    • (1998) Mech Time-Depend Mater , vol.2 , pp. 171-193
    • Bekkour, K.1    Scrivener, O.2
  • 6
    • 67650312143 scopus 로고    scopus 로고
    • Fabricating scaffolds by microfluidics
    • Chung K et al (2009) Fabricating scaffolds by microfluidics. Biomicrofluidics 3:22403. 10.1063/1.3122665
    • (2009) Biomicrofluidics , vol.3 , pp. 22403
    • Chung, K.1
  • 7
    • 84926205820 scopus 로고    scopus 로고
    • Rheology of foams and highly concentrated emulsions
    • Cohen-Addad S, Höhler R (2014) Rheology of foams and highly concentrated emulsions. Curr Opin Colloid Interface Sci 19(6):536–548. 10.1016/j.cocis.2014.11.003
    • (2014) Curr Opin Colloid Interface Sci , vol.19 , Issue.6 , pp. 536-548
    • Cohen-Addad, S.1    Höhler, R.2
  • 8
    • 84945935780 scopus 로고    scopus 로고
    • Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds
    • Costantini M et al (2015) Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds. ACS Appl Mater Interfaces 7:23660–23671. 10.1021/acsami.5b08221
    • (2015) ACS Appl Mater Interfaces , vol.7 , pp. 23660-23671
    • Costantini, M.1
  • 9
    • 33748947500 scopus 로고    scopus 로고
    • Two-phase flow in microchannels with surface modifications
    • Cubaud T, Ulmanella U, Ho C-M (2006) Two-phase flow in microchannels with surface modifications. Fluid Dyn Res 38:772–786. 10.1016/j.fluiddyn.2005.12.004
    • (2006) Fluid Dyn Res , vol.38 , pp. 772-786
    • Cubaud, T.1    Ulmanella, U.2    Ho, C.-M.3
  • 10
    • 20444498680 scopus 로고    scopus 로고
    • Relations between physicochemical properties and instability of decontamination foams
    • Dame C et al (2005) Relations between physicochemical properties and instability of decontamination foams. Colloids Surf, A 263:210–218. 10.1016/j.colsurfa.2004.12.053
    • (2005) Colloids Surf, A , vol.263 , pp. 210-218
    • Dame, C.1
  • 11
    • 70350735984 scopus 로고    scopus 로고
    • Modeling the thixotropic behavior of structured fluids
    • de Souza Mendes PR (2009) Modeling the thixotropic behavior of structured fluids. J Nonnewton Fluid Mech 164:66–75. 10.1016/j.jnnfm.2009.08.005
    • (2009) J Nonnewton Fluid Mech , vol.164 , pp. 66-75
    • de Souza Mendes, P.R.1
  • 12
    • 77955773603 scopus 로고    scopus 로고
    • Monodisperse foams in one to three dimensions
    • Drenckhan W, Langevin D (2010) Monodisperse foams in one to three dimensions. Curr Opin Colloid Interface Sci 15:341–358. 10.1016/j.cocis.2010.06.002
    • (2010) Curr Opin Colloid Interface Sci , vol.15 , pp. 341-358
    • Drenckhan, W.1    Langevin, D.2
  • 13
    • 20444472820 scopus 로고    scopus 로고
    • Rheology of ordered foams—on the way to discrete microfluidics
    • Drenckhan W et al (2005) Rheology of ordered foams—on the way to discrete microfluidics. Coll Surf A Physicochem Eng Aspects 263:52–64. 10.1016/j.colsurfa.2005.01.005
    • (2005) Coll Surf A Physicochem Eng Aspects , vol.263 , pp. 52-64
    • Drenckhan, W.1
  • 14
    • 34547649127 scopus 로고    scopus 로고
    • Relaxation time of the topological T1 process in a two-dimensional foam
    • Durand M, Stone HA (2006) Relaxation time of the topological T1 process in a two-dimensional foam. Phys Rev Lett 97:226101. 10.1103/PhysRevLett.97.226101
    • (2006) Phys Rev Lett , vol.97 , pp. 226101
    • Durand, M.1    Stone, H.A.2
  • 15
    • 47749095533 scopus 로고    scopus 로고
    • Gas and liquid transport in steady-state aqueous foam
    • Feitosa K, Durian DJ (2008) Gas and liquid transport in steady-state aqueous foam. Eur Phys J E 26:309–316. 10.1140/epje/i2007-10329-6LB-Feitosa
    • (2008) Eur Phys J E , vol.26 , pp. 309-316
    • Feitosa, K.1    Durian, D.J.2
  • 16
    • 84878593381 scopus 로고    scopus 로고
    • Microdevices for extensional rheometry of low viscosity elastic liquids: a review
    • Galindo-Rosales FJ, Alves MA, Oliveira MSN (2013) Microdevices for extensional rheometry of low viscosity elastic liquids: a review. Microfluid Nanofluid 14:1–19. 10.1007/s10404-012-1028-1LB-Galindo-Rosales2013
    • (2013) Microfluid Nanofluid , vol.14 , pp. 1-19
    • Galindo-Rosales, F.J.1    Alves, M.A.2    Oliveira, M.S.N.3
  • 17
    • 33749051403 scopus 로고    scopus 로고
    • Flowing crystals: nonequilibrium structure of foam
    • Garstecki P, Whitesides GM (2006) Flowing crystals: nonequilibrium structure of foam. Phys Rev Lett 97:24503. 10.1103/PhysRevLett.97.024503
    • (2006) Phys Rev Lett , vol.97 , pp. 24503
    • Garstecki, P.1    Whitesides, G.M.2
  • 18
    • 84988228151 scopus 로고    scopus 로고
    • Foam drainage. Possible influence of a non-newtonian surface shear viscosity
    • Gauchet S, Durand M, Langevin D (2015) Foam drainage. Possible influence of a non-newtonian surface shear viscosity. J Coll Interface Sci 449:373–376. 10.1016/j.jcis.2014.12.060
    • (2015) J Coll Interface Sci , vol.449 , pp. 373-376
    • Gauchet, S.1    Durand, M.2    Langevin, D.3
  • 19
    • 33746510564 scopus 로고    scopus 로고
    • Viscosimeter on a microfluidic chip
    • Guillot P et al (2006) Viscosimeter on a microfluidic chip. Langmuir 22:6438–6445. 10.1021/la060131z
    • (2006) Langmuir , vol.22 , pp. 6438-6445
    • Guillot, P.1
  • 20
    • 84984846403 scopus 로고    scopus 로고
    • 2 foam used in enhanced oil recovery
    • 2 foam used in enhanced oil recovery. Fuel 186:430–442. 10.1016/j.fuel.2016.08.058
    • (2016) Fuel , vol.186 , pp. 430-442
    • Guo, F.1    Aryana, S.2
  • 22
    • 33845592224 scopus 로고    scopus 로고
    • Effect of sodium dodecyl sulphate and dodecanol mixtures on foam film drainage: examining influence of surface rheology and intermolecular forces
    • Karakashev SI, Nguyen AV (2007) Effect of sodium dodecyl sulphate and dodecanol mixtures on foam film drainage: examining influence of surface rheology and intermolecular forces. Colloids Surf A 293:229–240. 10.1016/j.colsurfa.2006.07.047
    • (2007) Colloids Surf A , vol.293 , pp. 229-240
    • Karakashev, S.I.1    Nguyen, A.V.2
  • 23
    • 57349108790 scopus 로고    scopus 로고
    • Soft lithography for microfluidics: A review
    • Kim P et al (2008) Soft lithography for microfluidics: a review. BIiochip J 2:1–11
    • (2008) Biiochip J , vol.2 , pp. 1-11
    • Kim, P.1
  • 24
    • 84876933233 scopus 로고    scopus 로고
    • Measuring material relaxation and creep recovery in a microfluidic device
    • Koser AE et al (2013) Measuring material relaxation and creep recovery in a microfluidic device. Lab Chip 13:1850–1853. 10.1039/c3lc41379a
    • (2013) Lab Chip , vol.13 , pp. 1850-1853
    • Koser, A.E.1
  • 25
    • 84960925860 scopus 로고    scopus 로고
    • Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput
    • Laporte M et al (2016) Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput. J Food Eng 173:25–33. 10.1016/j.jfoodeng.2015.10.032
    • (2016) J Food Eng , vol.173 , pp. 25-33
    • Laporte, M.1
  • 26
    • 84924574649 scopus 로고    scopus 로고
    • Constitutive equations for thixotropic fluids
    • Larson RG (2015) Constitutive equations for thixotropic fluids. J Rheol 59:595–611. 10.1122/1.4913584
    • (2015) J Rheol , vol.59 , pp. 595-611
    • Larson, R.G.1
  • 27
    • 42549125999 scopus 로고    scopus 로고
    • Determining the optimal PDMS–PDMS bonding technique for microfluidic devices
    • Mark AE, Michael AJ, Bruce KG (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:67001
    • (2008) J Micromech Microeng , vol.18
    • Mark, A.E.1    Michael, A.J.2    Bruce, K.G.3
  • 28
    • 50049125632 scopus 로고    scopus 로고
    • Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering
    • Marze S, Langevin D, Saint-Jalmes A (2008) Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. J Rheol 52:1091. 10.1122/1.2952510
    • (2008) J Rheol , vol.52 , pp. 1091
    • Marze, S.1    Langevin, D.2    Saint-Jalmes, A.3
  • 29
    • 65349125847 scopus 로고    scopus 로고
    • Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects
    • Marze S, Guillermic RM, Saint-Jalmes A (2009) Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects. Soft Matter 5:1937–1946. 10.1039/B817543H
    • (2009) Soft Matter , vol.5 , pp. 1937-1946
    • Marze, S.1    Guillermic, R.M.2    Saint-Jalmes, A.3
  • 30
    • 0018469619 scopus 로고
    • Thixotropy—a general review
    • Mewis J (1979) Thixotropy—a general review. J Nonnewton Fluid Mech 6:1–20. 10.1016/0377-0257(79)87001-9
    • (1979) J Nonnewton Fluid Mech , vol.6 , pp. 1-20
    • Mewis, J.1
  • 33
    • 70349542926 scopus 로고    scopus 로고
    • Egg albumin and guar gum influence on foam thixotropy
    • Miquelim JN, Da Silva Lannes SC (2009) Egg albumin and guar gum influence on foam thixotropy. J Texture Stud 40:623–636. 10.1111/j.1745-4603.2009.00201.x
    • (2009) J Texture Stud , vol.40 , pp. 623-636
    • Miquelim, J.N.1    Da Silva Lannes, S.C.2
  • 35
    • 60049099901 scopus 로고    scopus 로고
    • Microfluidic rheometry
    • Pipe CJ, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36:110–120. 10.1016/j.mechrescom.2008.08.009
    • (2009) Mech Res Commun , vol.36 , pp. 110-120
    • Pipe, C.J.1    McKinley, G.H.2
  • 36
    • 10044230671 scopus 로고    scopus 로고
    • Liquid drainage through aqueous foam: study of the flow on the bubble scale
    • Pitois O, Fritz C, Vignes-Adler M (2005) Liquid drainage through aqueous foam: study of the flow on the bubble scale. J Colloid Interface Sci 282:458–465. 10.1016/j.jcis.2004.08.187
    • (2005) J Colloid Interface Sci , vol.282 , pp. 458-465
    • Pitois, O.1    Fritz, C.2    Vignes-Adler, M.3
  • 37
    • 84904498633 scopus 로고    scopus 로고
    • Microfluidic study of foams flow for enhanced oil recovery (EOR)
    • Quennouz N et al (2014) Microfluidic study of foams flow for enhanced oil recovery (EOR). Oil Gas Sci Technol 69:457–466. 10.2516/ogst/2014017
    • (2014) Oil Gas Sci Technol , vol.69 , pp. 457-466
    • Quennouz, N.1
  • 38
    • 33749548192 scopus 로고    scopus 로고
    • Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows
    • Raven JP, Marmottant P (2006) Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows. Phys Rev Lett 97:154501. 10.1103/PhysRevLett.97.154501
    • (2006) Phys Rev Lett , vol.97 , pp. 154501
    • Raven, J.P.1    Marmottant, P.2
  • 39
    • 61649119050 scopus 로고    scopus 로고
    • Microfluidic crystals: dynamic interplay between rearrangement waves and flow
    • Raven JP, Marmottant P (2009) Microfluidic crystals: dynamic interplay between rearrangement waves and flow. Phys Rev Lett 102:84501. 10.1103/PhysRevLett.102.084501
    • (2009) Phys Rev Lett , vol.102 , pp. 84501
    • Raven, J.P.1    Marmottant, P.2
  • 40
    • 39049173410 scopus 로고    scopus 로고
    • Micellization of sodium dodecyl sulfate in glycerol aqueous mixtures
    • Ruiz CC, Díaz-López L, Aguiar J (2008) Micellization of sodium dodecyl sulfate in glycerol aqueous mixtures. J Dispers Sci Technol 29:266–273. 10.1080/01932690701707571
    • (2008) J Dispers Sci Technol , vol.29 , pp. 266-273
    • Ruiz, C.C.1    Díaz-López, L.2    Aguiar, J.3
  • 41
    • 33644977172 scopus 로고    scopus 로고
    • Viscosity effects in foam drainage: newtonian and non-newtonian foaming fluids
    • Safouane M et al (2006) Viscosity effects in foam drainage: newtonian and non-newtonian foaming fluids. Eur Phys J E 19:195–202. 10.1140/epje/e2006-00025-4
    • (2006) Eur Phys J E , vol.19 , pp. 195-202
    • Safouane, M.1
  • 42
    • 33748950302 scopus 로고    scopus 로고
    • Physical chemistry in foam drainage and coarsening
    • Saint-Jalmes A (2006) Physical chemistry in foam drainage and coarsening. Soft Matter 2:836–849. 10.1039/B606780H
    • (2006) Soft Matter , vol.2 , pp. 836-849
    • Saint-Jalmes, A.1
  • 43
    • 10144237908 scopus 로고    scopus 로고
    • Quantitative description of foam drainage: transitions with surface mobility
    • Saint-Jalmes A, Zhang Y, Langevin D (2004) Quantitative description of foam drainage: transitions with surface mobility. Eur Phys J E 15:53–60. 10.1140/epje/i2004-10036-xLB-Saint-Jalmes2004
    • (2004) Eur Phys J E , vol.15 , pp. 53-60
    • Saint-Jalmes, A.1    Zhang, Y.2    Langevin, D.3
  • 45
    • 38849141581 scopus 로고    scopus 로고
    • Formation of bubbles and foams in gelatine solutions within a vertical glass tube
    • Skurtys O, Bouchon P, Aguilera JM (2008) Formation of bubbles and foams in gelatine solutions within a vertical glass tube. Food Hydrocoll 22:706–714. 10.1016/j.foodhyd.2007.02.003
    • (2008) Food Hydrocoll , vol.22 , pp. 706-714
    • Skurtys, O.1    Bouchon, P.2    Aguilera, J.M.3
  • 46
    • 77955416362 scopus 로고    scopus 로고
    • A viscous–inertial model of foam drainage
    • Stevenson P, Li X (2010) A viscous–inertial model of foam drainage. Chem Eng Res Des 88:928–935. 10.1016/j.cherd.2010.01.014
    • (2010) Chem Eng Res Des , vol.88 , pp. 928-935
    • Stevenson, P.1    Li, X.2
  • 47
    • 85053059823 scopus 로고    scopus 로고
    • A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery
    • Yekeen N et al (2018) A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. J Petrol Sci Eng 164:43–74. 10.1016/j.petrol.2018.01.035
    • (2018) J Petrol Sci Eng , vol.164 , pp. 43-74
    • Yekeen, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.