메뉴 건너뛰기




Volumn 243, Issue , 2020, Pages

Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system

Author keywords

Cleaner production; Efficiency; Energy; Exergy; Geothermal power system; Hydrogen liquefaction

Indexed keywords

BUTENES; EFFICIENCY; ENERGY UTILIZATION; EXERGY; FOSSIL FUELS; GEOTHERMAL FIELDS; LIQUEFACTION; LIQUEFIED GASES; MASS TRANSFER; NITROGEN; POLLUTION CONTROL; POWER PLANTS; REFRIGERATION;

EID: 85073737307     PISSN: 09596526     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jclepro.2019.118562     Document Type: Article
Times cited : (84)

References (28)
  • 1
    • 85054669520 scopus 로고    scopus 로고
    • Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system
    • Aasadnia, M., Mehrpooya, M., 2018. Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system. J. Clean. Prod. 205, 565-588. https://doi.org/10.1016/j.jclepro.2018.09.001
    • (2018) J. Clean. Prod. , vol.205 , pp. 565-588
    • Aasadnia, M.1    Mehrpooya, M.2
  • 2
    • 85010900186 scopus 로고    scopus 로고
    • Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system
    • Ansarinasab, H., Mehrpooya, M., Mohammadi, A., 2017. Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system. J. Clean. Prod. 144, 248-259. https://doi.org/10.1016/j.jclepro.2017.01.014
    • (2017) J. Clean. Prod. , vol.144 , pp. 248-259
    • Ansarinasab, H.1    Mehrpooya, M.2    Mohammadi, A.3
  • 3
    • 85057179277 scopus 로고    scopus 로고
    • An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses
    • Ansarinasab, H., Mehrpooya, M., Sadeghzadeh, M., 2019. An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses. J. Clean. Prod. 210, 530-541. https://doi.org/10.1016/j.jclepro.2018.11.090
    • (2019) J. Clean. Prod. , vol.210 , pp. 530-541
    • Ansarinasab, H.1    Mehrpooya, M.2    Sadeghzadeh, M.3
  • 4
    • 85019693612 scopus 로고    scopus 로고
    • A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems
    • Asadnia, M., Mehrpooya, M., 2017a. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems. Int. J. Hydrogen Energy 42, 15564-15585. https://doi.org/10.1016/j.ijhydene.2017.04.260
    • (2017) Int. J. Hydrogen Energy , vol.42 , pp. 15564-15585
    • Asadnia, M.1    Mehrpooya, M.2
  • 5
    • 0018156501 scopus 로고
    • A study of the efficiency of hydrogen liquefaction
    • Baker, C.R., Shaner, R.L., 1978. A study of the efficiency of hydrogen liquefaction. Int. J. Hydrogen Energy 3, 321-334. https://doi.org/10.1016/0360-3199(78)90037-X
    • (1978) Int. J. Hydrogen Energy , vol.3 , pp. 321-334
    • Baker, C.R.1    Shaner, R.L.2
  • 6
    • 77951206165 scopus 로고    scopus 로고
    • Large-scale hydrogen liquefier utilising mixed-refrigerant
    • Berstad, D.O., Stang, J.H., Neksa, P., 2010. Large-scale hydrogen liquefier utilising mixed-refrigerant. Int. J. Hydrogen Energy 35, 4512-4523. https://doi.org/10.1016/j.ijhydene.2010.02.001
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 4512-4523
    • Berstad, D.O.1    Stang, J.H.2    Neksa, P.3
  • 7
    • 0028257206 scopus 로고
    • Large-scale hydrogen liquefaction in Germany
    • Bracha, M., Lorenz, G., Patzelt, A., Wanner, M., 1994. Large-scale hydrogen liquefaction in Germany. Int. J. Hydrogen Energy 19, 53-59. https://doi.org/10.1016/0360-3199(94)90177-5
    • (1994) Int. J. Hydrogen Energy , vol.19 , pp. 53-59
    • Bracha, M.1    Lorenz, G.2    Patzelt, A.3    Wanner, M.4
  • 8
    • 85017440150 scopus 로고    scopus 로고
    • Process optimization for large-scale hydrogen liquefaction
    • Cardella, U., Decker, L., Sundberg, J., Klein, H., 2017. Process optimization for large-scale hydrogen liquefaction. Int. J. Hydrogen Energy 42, 12339-12354. https://doi.org/10.1016/j.ijhydene.2017.03.167
    • (2017) Int. J. Hydrogen Energy , vol.42 , pp. 12339-12354
    • Cardella, U.1    Decker, L.2    Sundberg, J.3    Klein, H.4
  • 9
    • 84875703883 scopus 로고    scopus 로고
    • A comprehensive review on PEM water electrolysis
    • Carmo, M., Fritz, D.L., Mergel, J., Stolten, D., 2013. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901-4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 4901-4934
    • Carmo, M.1    Fritz, D.L.2    Mergel, J.3    Stolten, D.4
  • 10
    • 84928931321 scopus 로고    scopus 로고
    • Review and evaluation of hydrogen production methods for better sustainability
    • Dincer, I., Acar, C., 2014. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40, 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
    • (2014) Int. J. Hydrogen Energy , vol.40 , pp. 11094-11111
    • Dincer, I.1    Acar, C.2
  • 11
    • 4043112177 scopus 로고    scopus 로고
    • Sustainable Hydrogen Production
    • Elsevier Inc. Joe Hayton
    • Dincre, I., Zamfirescu, C., 2016. Sustainable hydrogen production, Elsevier Inc. Joe Hayton. https://doi.org/10.1126/science.1103197
    • (2016)
    • Dincer, I.1    Zamfirescu, C.2
  • 12
    • 77951141712 scopus 로고    scopus 로고
    • Development of large-scale hydrogen liquefaction processes from 1898 to 2009
    • Krasae-in, S., Stang, J.H., Neksa, P., 2010. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy 35, 4524-4533. https://doi.org/10.1016/j.ijhydene.2010.02.109
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 4524-4533
    • Krasae-in, S.1    Stang, J.H.2    Neksa, P.3
  • 13
    • 70450181139 scopus 로고    scopus 로고
    • Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen
    • Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W., 2009. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38, 721-748. https://doi.org/10.1063/1.3160306
    • (2009) J. Phys. Chem. Ref. Data , vol.38 , pp. 721-748
    • Leachman, J.W.1    Jacobsen, R.T.2    Penoncello, S.G.3    Lemmon, E.W.4
  • 14
    • 85019394936 scopus 로고    scopus 로고
    • Study of large hydrogen liquefaction in process
    • 175–175
    • Matsuda, H.., Nagami, M., 1997. Study of large hydrogen liquefaction in process. Hydrog. Energy 8, 175-175.
    • (1997) Hydrog. Energy , vol.8
    • Matsuda, H.1    Nagami, M.2
  • 16
    • 85049336336 scopus 로고    scopus 로고
    • A comprehensive review on coupling different types of electrolyzer to renewable energy sources
    • Mohammadi, A., Mehrpooya, M., 2018. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 158, 632-655. https://doi.org/10.1016/j.energy.2018.06.073
    • (2018) Energy , vol.158 , pp. 632-655
    • Mohammadi, A.1    Mehrpooya, M.2
  • 17
    • 85007173639 scopus 로고    scopus 로고
    • Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator
    • Noh, J., Fulgueras, A.M., Sebastian, L.J., Lee, H.G., Kim, D.S., Cho, J., 2017. Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator. J. Ind. Eng. Chem. 46, 1-8. https://doi.org/10.1016/j.jiec.2016.07.053
    • (2017) J. Ind. Eng. Chem. , vol.46 , pp. 1-8
    • Noh, J.1    Fulgueras, A.M.2    Sebastian, L.J.3    Lee, H.G.4    Kim, D.S.5    Cho, J.6
  • 18
    • 85019388072 scopus 로고    scopus 로고
    • The latest developments and outlook for hydrogen liquefaction technology
    • Ohlig, K., Decker, L., 2014. The latest developments and outlook for hydrogen liquefaction technology. AIP Conf. Proc. 1573, 1311-1317. https://doi.org/10.1063/1.4860858
    • (2014) AIP Conf. Proc. , vol.1573 , pp. 1311-1317
    • Ohlig, K.1    Decker, L.2
  • 19
    • 0016917018 scopus 로고
    • A new two-constant equation of state
    • Peng, D.Y., Robinson, D.B., 1976. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 15, 59-64. https://doi.org/10.1021/i160057a011
    • (1976) Ind. Eng. Chem. Fundam. , vol.15 , pp. 59-64
    • Peng, D.Y.1    Robinson, D.B.2
  • 20
    • 33645022883 scopus 로고    scopus 로고
    • Conceptual design of a high efficiency large capacity hydrogen liquefier
    • AIP Conference Proceedings
    • Quack, H., 2002. Conceptual design of a high efficiency large capacity hydrogen liquefier, in: AIP Conference Proceedings. In AIP Conference Proceedings, pp. 255-263. https://doi.org/10.1063/1.1472029
    • (2002) In AIP Conference Proceedings , pp. 255-263
    • Quack, H.1
  • 21
    • 84868203525 scopus 로고    scopus 로고
    • Thermodynamic analysis of a new renewable energy based hybrid system for hydrogen liquefaction
    • Ratlamwala, T.A.H., Dincer, I., Gadalla, M.A., Kanoglu, M., 2012. Thermodynamic analysis of a new renewable energy based hybrid system for hydrogen liquefaction. Int. J. Hydrogen Energy 37, 18108-18117. https://doi.org/10.1016/j.ijhydene.2012.09.036
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 18108-18117
    • Ratlamwala, T.A.H.1    Dincer, I.2    Gadalla, M.A.3    Kanoglu, M.4
  • 22
    • 85012008376 scopus 로고    scopus 로고
    • Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration
    • Sadaghiani, M.S., Mehrpooya, M., 2017. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. Int. J. Hydrogen Energy 42, 6033-6050. https://doi.org/10.1016/j.ijhydene.2017.01.136
    • (2017) Int. J. Hydrogen Energy , vol.42 , pp. 6033-6050
    • Sadaghiani, M.S.1    Mehrpooya, M.2
  • 23
    • 85033604483 scopus 로고    scopus 로고
    • Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process
    • Sadaghiani, M.S., Mehrpooya, M., Ansarinasab, H., 2017. Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process. Int. J. Hydrogen Energy 42, 29797-29819. https://doi.org/10.1016/j.ijhydene.2017.10.124
    • (2017) Int. J. Hydrogen Energy , vol.42 , pp. 29797-29819
    • Sadaghiani, M.S.1    Mehrpooya, M.2    Ansarinasab, H.3
  • 24
    • 84994417408 scopus 로고    scopus 로고
    • Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities
    • Uyar, T.S., Besikci, D., 2017. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. Int. J. Hydrogen Energy 42, 2453-2456. https://doi.org/10.1016/j.ijhydene.2016.09.086
    • (2017) Int. J. Hydrogen Energy , vol.42 , pp. 2453-2456
    • Uyar, T.S.1    Beşikci, D.2
  • 25
    • 44749089700 scopus 로고    scopus 로고
    • Proposal of an innovative, high-efficiency, large-scale hydrogen liquefier
    • Valenti, G., Macchi, E., 2008. Proposal of an innovative, high-efficiency, large-scale hydrogen liquefier. Int. J. Hydrogen Energy 33, 3116-3121. https://doi.org/10.1016/j.ijhydene.2008.03.044
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 3116-3121
    • Valenti, G.1    Macchi, E.2
  • 26
    • 84904734195 scopus 로고    scopus 로고
    • Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization
    • Wagner, S., 2014. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: Implications for PHIP gas storage and utilization. Magn. Reson. Mater. Physics, Biol. Med. 27, 195-199. https://doi.org/10.1007/s10334-013-0399-y
    • (2014) Magn. Reson. Mater. Phys., Biol. Med. , vol.27 , pp. 195-199
    • Wagner, S.1
  • 27
    • 85042034490 scopus 로고    scopus 로고
    • Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes
    • Wilhelmsen, OE., Berstad, D., Aasen, A., Neksa, P., Skaugen, G., 2018. Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes. Int. J. Hydrogen Energy 43, 5033-5047. https://doi.org/10.1016/j.ijhydene.2018.01.094
    • (2018) Int. J. Hydrogen Energy , vol.43 , pp. 5033-5047
    • Wilhelmsen, Ø.1    Berstad, D.2    Aasen, A.3    Nekså, P.4    Skaugen, G.5
  • 28
    • 84997269661 scopus 로고    scopus 로고
    • Design and operation of renewable energy sources based hydrogen supply system: technology integration and optimization
    • Won, W., Kwon, H., Han, J.H., Kim, J., 2017. Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization. Renew. Energy 103, 226-238. https://doi.org/10.1016/j.renene.2016.11.038
    • (2017) Renew. Energy , vol.103 , pp. 226-238
    • Won, W.1    Kwon, H.2    Han, J.H.3    Kim, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.