메뉴 건너뛰기




Volumn 17, Issue 1, 2019, Pages

Personalized prediction of live birth prior to the first in vitro fertilization treatment: A machine learning method

Author keywords

Cumulative live birth; IVF ICSI; Machine learning; Prediction model

Indexed keywords

MUELLERIAN INHIBITING FACTOR;

EID: 85072553906     PISSN: None     EISSN: 14795876     Source Type: Journal    
DOI: 10.1186/s12967-019-2062-5     Document Type: Article
Times cited : (55)

References (27)
  • 2
    • 85044543398 scopus 로고    scopus 로고
    • Fertility and infertility: Definition and epidemiology
    • Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2-10.
    • (2018) Clin Biochem , vol.62 , pp. 2-10
    • Vander Borght, M.1    Wyns, C.2
  • 3
    • 85058424244 scopus 로고    scopus 로고
    • In vitro fertilisation/intracytoplasmic sperm injection beyond 2020
    • 1:STN:280:DC%2BB3cnhvV2iuw%3D%3D
    • Crawford GE, Ledger WL. In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG. 2019;126(2):237-43.
    • (2019) BJOG , vol.126 , Issue.2 , pp. 237-243
    • Crawford, G.E.1    Ledger, W.L.2
  • 5
    • 84961941239 scopus 로고    scopus 로고
    • Interventions for the prevention of OHSS in ART cycles: An overview of Cochrane reviews
    • 28111738
    • Mourad S, Brown J, Farquhar C. Interventions for the prevention of OHSS in ART cycles: An overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;1:Cd012103.
    • (2017) Cochrane Database Syst Rev , vol.1 , pp. Cd012103
    • Mourad, S.1    Brown, J.2    Farquhar, C.3
  • 6
    • 84938531342 scopus 로고    scopus 로고
    • Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century
    • Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411-26.
    • (2015) Hum Reprod Update , vol.21 , Issue.4 , pp. 411-426
    • Inhorn, M.C.1    Patrizio, P.2
  • 7
    • 84957606745 scopus 로고    scopus 로고
    • Predicting the chance of live birth for women undergoing IVF: A novel pretreatment counselling tool
    • 1:STN:280:DC%2BC28zkvVCqsA%3D%3D
    • Dhillon RK, McLernon DJ, Smith PP, Fishel S, Dowell K, Deeks JJ, et al. Predicting the chance of live birth for women undergoing IVF: A novel pretreatment counselling tool. Hum Reprod. 2016;31(1):84-92.
    • (2016) Hum Reprod , vol.31 , Issue.1 , pp. 84-92
    • Dhillon, R.K.1    McLernon, D.J.2    Smith, P.P.3    Fishel, S.4    Dowell, K.5    Deeks, J.J.6
  • 8
    • 84996878259 scopus 로고    scopus 로고
    • Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: Population based study of linked cycle data from 113,873 women
    • McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113,873 women. BMJ. 2016;355:i5735.
    • (2016) BMJ , vol.355 , pp. i5735
    • McLernon, D.J.1    Steyerberg, E.W.2    Te Velde, E.R.3    Lee, A.J.4    Bhattacharya, S.5
  • 9
    • 85053026270 scopus 로고    scopus 로고
    • An improvement in the method used to assess discriminatory ability when predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation
    • McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. An improvement in the method used to assess discriminatory ability when predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation. BMJ. 2018;362:k3598.
    • (2018) BMJ , vol.362 , pp. k3598
    • McLernon, D.J.1    Steyerberg, E.W.2    Te Velde, E.R.3    Lee, A.J.4    Bhattacharya, S.5
  • 10
    • 85069236133 scopus 로고    scopus 로고
    • Female obesity is negatively associated with live birth rate following IVF: A systematic review and meta-Analysis
    • Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: A systematic review and meta-Analysis. Hum Reprod Update. 2019;25:439-51.
    • (2019) Hum Reprod Update , vol.25 , pp. 439-451
    • Sermondade, N.1    Huberlant, S.2    Bourhis-Lefebvre, V.3    Arbo, E.4    Gallot, V.5    Colombani, M.6
  • 11
    • 84899455502 scopus 로고    scopus 로고
    • The predictive accuracy of anti-Mullerian hormone for live birth after assisted conception: A systematic review and meta-Analysis of the literature
    • 1:CAS:528:DC%2BC2cXhtVKhs7zJ
    • Iliodromiti S, Kelsey TW, Wu O, Anderson RA, Nelson SM. The predictive accuracy of anti-Mullerian hormone for live birth after assisted conception: A systematic review and meta-Analysis of the literature. Hum Reprod Update. 2014;20(4):560-70.
    • (2014) Hum Reprod Update , vol.20 , Issue.4 , pp. 560-570
    • Iliodromiti, S.1    Kelsey, T.W.2    Wu, O.3    Anderson, R.A.4    Nelson, S.M.5
  • 12
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920-30.
    • (2015) Circulation , vol.132 , Issue.20 , pp. 1920-1930
    • Deo, R.C.1
  • 14
    • 85056802543 scopus 로고    scopus 로고
    • Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records
    • Rahimian F, Salimi-Khorshidi G, Payberah AH, Tran J, Ayala Solares R, Raimondi F, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records. PLoS Med. 2018;15(11):e1002695.
    • (2018) PLoS Med , vol.15 , Issue.11 , pp. e1002695
    • Rahimian, F.1    Salimi-Khorshidi, G.2    Payberah, A.H.3    Tran, J.4    Ayala Solares, R.5    Raimondi, F.6
  • 15
    • 85062881593 scopus 로고    scopus 로고
    • Predicting future cardiovascular events in patients with peripheral artery disease using electronic health record data
    • Ross EG, Jung K, Dudley JT, Li L, Leeper NJ, Shah NH. Predicting future cardiovascular events in patients with peripheral artery disease using electronic health record data. Circ Cardiovasc Qual Outcomes. 2019;12(3):e004741.
    • (2019) Circ Cardiovasc Qual Outcomes , vol.12 , Issue.3 , pp. e004741
    • Ross, E.G.1    Jung, K.2    Dudley, J.T.3    Li, L.4    Leeper, N.J.5    Shah, N.H.6
  • 16
    • 84864914397 scopus 로고    scopus 로고
    • A method for semi-Automatic grading of human blastocyst microscope images
    • 1:STN:280:DC%2BC38jltFagtA%3D%3D
    • Santos Filho E, Noble JA, Poli M, Griffiths T, Emerson G, Wells D. A method for semi-Automatic grading of human blastocyst microscope images. Hum Reprod. 2012;27(9):2641-8.
    • (2012) Hum Reprod , vol.27 , Issue.9 , pp. 2641-2648
    • Santos Filho, E.1    Noble, J.A.2    Poli, M.3    Griffiths, T.4    Emerson, G.5    Wells, D.6
  • 17
    • 85059339391 scopus 로고    scopus 로고
    • Prediction of implantation after blastocyst transfer in in vitro fertilization: A machine-learning perspective
    • Blank C, Wildeboer RR, DeCroo I, Tilleman K, Weyers B, de Sutter P, et al. Prediction of implantation after blastocyst transfer in in vitro fertilization: A machine-learning perspective. Fertil Steril. 2019;111(2):318-26.
    • (2019) Fertil Steril , vol.111 , Issue.2 , pp. 318-326
    • Blank, C.1    Wildeboer, R.R.2    Decroo, I.3    Tilleman, K.4    Weyers, B.5    De Sutter, P.6
  • 18
    • 77953215733 scopus 로고    scopus 로고
    • Machine learning in medicine: A primer for physicians
    • Waljee AK, Higgins PD. Machine learning in medicine: A primer for physicians. Am J Gastroenterol. 2010;105(6):1224-6.
    • (2010) Am J Gastroenterol , vol.105 , Issue.6 , pp. 1224-1226
    • Waljee, A.K.1    Higgins, P.D.2
  • 19
    • 84994065541 scopus 로고    scopus 로고
    • Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: A machine learning approach
    • Koutsouleris N, Kahn RS, Chekroud AM, Leucht S, Falkai P, Wobrock T, et al. Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: A machine learning approach. Lancet Psychiatry. 2016;3(10):935-46.
    • (2016) Lancet Psychiatry , vol.3 , Issue.10 , pp. 935-946
    • Koutsouleris, N.1    Kahn, R.S.2    Chekroud, A.M.3    Leucht, S.4    Falkai, P.5    Wobrock, T.6
  • 20
    • 84885990249 scopus 로고    scopus 로고
    • Fertility: Assessment and treatment for people with fertility problems. London: Royal College of Obstetricians & Gynaecologists; 2013 Feb. (NICE Clinical Guidelines, No. 156.)
    • National Collaborating Centre for Women's and Children's Health (UK). Fertility: Assessment and treatment for people with fertility problems. London: Royal College of Obstetricians & Gynaecologists; 2013 Feb. (NICE Clinical Guidelines, No. 156.) https://www.ncbi.nlm.nih.gov/books/NBK247932/.
    • National Collaborating Centre for Women's and Children's Health (UK)
  • 22
    • 85064899814 scopus 로고    scopus 로고
    • Big data and machine learning algorithms for health-care delivery
    • Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-73.
    • (2019) Lancet Oncol , vol.20 , Issue.5 , pp. e262-e273
    • Ngiam, K.Y.1    Khor, I.W.2
  • 24
    • 85044599728 scopus 로고    scopus 로고
    • Predictive variables for failure in administration of intrapleural tissue plasminogen activator/deoxyribonuclease in patients with complicated parapneumonic effusions/empyema
    • Khemasuwan D, Sorensen J, Griffin DC. Predictive variables for failure in administration of intrapleural tissue plasminogen activator/deoxyribonuclease in patients with complicated parapneumonic effusions/empyema. Chest. 2018;154(3):550-6.
    • (2018) Chest , vol.154 , Issue.3 , pp. 550-556
    • Khemasuwan, D.1    Sorensen, J.2    Griffin, D.C.3
  • 25
    • 85064191396 scopus 로고    scopus 로고
    • Comparison and development of machine learning tools in the prediction of chronic kidney disease progression
    • Xiao J, Ding R, Xu X, Guan H, Feng X, Sun T, et al. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression. J Transl Med. 2019;17(1):119.
    • (2019) J Transl Med , vol.17 , Issue.1 , pp. 119
    • Xiao, J.1    Ding, R.2    Xu, X.3    Guan, H.4    Feng, X.5    Sun, T.6
  • 26
    • 85064105859 scopus 로고    scopus 로고
    • Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care
    • Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care. 2019;23(1):112.
    • (2019) Crit Care , vol.23 , Issue.1 , pp. 112
    • Zhang, Z.1    Ho, K.M.2    Hong, Y.3
  • 27
    • 85055567347 scopus 로고    scopus 로고
    • Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: An external validation study
    • 1:STN:280:DC%2BB3c7lvVGrsQ%3D%3D
    • Leijdekkers JA, Eijkemans MJC, van Tilborg TC, Oudshoorn SC, McLernon DJ, Bhattacharya S, et al. Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: An external validation study. Hum Reprod. 2018;33(9):1684-95.
    • (2018) Hum Reprod , vol.33 , Issue.9 , pp. 1684-1695
    • Leijdekkers, J.A.1    Eijkemans, M.J.C.2    Van Tilborg, T.C.3    Oudshoorn, S.C.4    McLernon, D.J.5    Bhattacharya, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.