-
1
-
-
79959880152
-
On the water-wave equations with surface tension
-
T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension, Duke Math. J., 158 (2011), 413-499.
-
(2011)
Duke Math. J.
, vol.158
, pp. 413-499
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
2
-
-
84861694721
-
Well-posedness of a model for water waves with viscosity
-
D. Ambrose, J. Bona and D. Nicholls, Well-posedness of a model for water waves with viscosity, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1113-1137.
-
(2012)
Discrete Contin. Dyn. Syst. Ser. B
, vol.17
, pp. 1113-1137
-
-
Ambrose, D.1
Bona, J.2
Nicholls, D.3
-
3
-
-
84899827334
-
On ill-posedness of truncated series models for water waves
-
20130849
-
D. Ambrose, J. Bona and D. Nicholls, On ill-posedness of truncated series models for water waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20130849, 16pp.
-
(2014)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.470
-
-
Ambrose, D.1
Bona, J.2
Nicholls, D.3
-
4
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
D. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., 58 (2005), 1287-1315.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1287-1315
-
-
Ambrose, D.1
Masmoudi, N.2
-
5
-
-
67249144683
-
The zero surface tension limit of three-dimensional water waves
-
D. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana Univ. Math. J., 58 (2009), 479-521.
-
(2009)
Indiana Univ. Math. J.
, vol.58
, pp. 479-521
-
-
Ambrose, D.1
Masmoudi, N.2
-
6
-
-
85015628650
-
Well-posedness of two-dimensional hydroelastic waves
-
D. Ambrose and M. Siegel, Well-posedness of two-dimensional hydroelastic waves, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 529-570.
-
(2017)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.147
, pp. 529-570
-
-
Ambrose, D.1
Siegel, M.2
-
8
-
-
84940386316
-
Local existence theory for derivative nonlinear Schrödinger equations with noninteger power nonlinearities
-
D. Ambrose and G. Simpson, Local existence theory for derivative nonlinear Schrödinger equations with noninteger power nonlinearities, SIAM J. Math. Anal., 47 (2015), 2241-2264.
-
(2015)
SIAM J. Math. Anal.
, vol.47
, pp. 2241-2264
-
-
Ambrose, D.1
Simpson, G.2
-
9
-
-
77955068691
-
Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves
-
P. Baldi and J. Toland, Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves, Interfaces Free Bound., 12 (2010), 1-22.
-
(2010)
Interfaces Free Bound.
, vol.12
, pp. 1-22
-
-
Baldi, P.1
Toland, J.2
-
10
-
-
0031079913
-
Reappraisal of the Kelvin-Helmholtz problem. II. Interaction of the Kelvin-Helmholtz, superharmonic and Benjamin-Feir instabilities
-
T. Benjamin and T. Bridges, Reappraisal of the Kelvin-Helmholtz problem. II. Interaction of the Kelvin-Helmholtz, superharmonic and Benjamin-Feir instabilities, J. Fluid Mech., 333 (1997), 327-373.
-
(1997)
J. Fluid Mech.
, vol.333
, pp. 327-373
-
-
Benjamin, T.1
Bridges, T.2
-
11
-
-
0001191104
-
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
-
URL
-
J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), 14 (1981), 209-246, URL http: //www.numdam.org/item?id=ASENS-1981-4-14-2-209-0.
-
(1981)
Ann. Sci. École Norm. Sup. (4)
, vol.14
, pp. 209-246
-
-
Bony, J.-M.1
-
12
-
-
0001747831
-
Singular solutions and ill-posedness for the evolution of vortex sheets
-
R. Caisch and O. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 293-307
-
-
Caisch, R.1
Orellana, O.2
-
13
-
-
78049501969
-
Strichartz estimates for the water-wave problem with surface tension
-
H. Christianson, V. Hur and G. Staffilani, Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations, 35 (2010), 2195-2252.
-
(2010)
Comm. Partial Differential Equations
, vol.35
, pp. 2195-2252
-
-
Christianson, H.1
Hur, V.2
Staffilani, G.3
-
14
-
-
84968508844
-
Local smoothing properties of dispersive equations
-
P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.
-
(1988)
J. Amer. Math. Soc.
, vol.1
, pp. 413-439
-
-
Constantin, P.1
Saut, J.-C.2
-
15
-
-
30544433668
-
Hamiltonian long-wave expansions for free surfaces and interfaces
-
W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005), 1587-1641.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1587-1641
-
-
Craig, W.1
Guyenne, P.2
Kalisch, H.3
-
16
-
-
76349125095
-
Water waves over a random bottom
-
W. Craig, P. Guyenne and C. Sulem, Water waves over a random bottom, J. Fluid Mech., 640 (2009), 79-107.
-
(2009)
J. Fluid Mech.
, vol.640
, pp. 79-107
-
-
Craig, W.1
Guyenne, P.2
Sulem, C.3
-
17
-
-
0002686768
-
Numerical simulation of gravity waves
-
W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108 (1993), 73-83.
-
(1993)
J. Comput. Phys.
, vol.108
, pp. 73-83
-
-
Craig, W.1
Sulem, C.2
-
18
-
-
51849118236
-
Long wave expansions for water waves over random topography
-
A. de Bouard, W. Craig, O. Díaz-Espinosa, P. Guyenne and C. Sulem, Long wave expansions for water waves over random topography, Nonlinearity, 21 (2008), 2143-2178.
-
(2008)
Nonlinearity
, vol.21
, pp. 2143-2178
-
-
De Bouard, A.1
Craig, W.2
Díaz-Espinosa, O.3
Guyenne, P.4
Sulem, C.5
-
19
-
-
38849134959
-
Theory of weakly damped free-surface ows: A new formulation based on potential ow solutions
-
F. Dias, A. Dyachenko and V. Zakharov, Theory of weakly damped free-surface ows: A new formulation based on potential ow solutions, Phys. Lett. A, 372 (2008), 1297-1302.
-
(2008)
Phys. Lett. A
, vol.372
, pp. 1297-1302
-
-
Dias, F.1
Dyachenko, A.2
Zakharov, V.3
-
20
-
-
84994123732
-
Variational existence theory for hydroelastic solitary waves
-
M. Groves, B. Hewer and E. Wahlén, Variational existence theory for hydroelastic solitary waves, C. R. Math. Acad. Sci. Paris, 354 (2016), 1078-1086.
-
(2016)
C. R. Math. Acad. Sci. Paris
, vol.354
, pp. 1078-1086
-
-
Groves, M.1
Hewer, B.2
Wahlén, E.3
-
21
-
-
84870809773
-
Computations of fully nonlinear hydroelastic solitary waves on deep water
-
P. Guyenne and E. Pǎrǎu, Computations of fully nonlinear hydroelastic solitary waves on deep water, J. Fluid Mech., 713 (2012), 307-329.
-
(2012)
J. Fluid Mech.
, vol.713
, pp. 307-329
-
-
Guyenne, P.1
Pǎrǎu, E.2
-
22
-
-
0003764816
-
-
of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin
-
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, vol. 26 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 1997.
-
(1997)
Lectures on Nonlinear Hyperbolic Differential Equations
, vol.26
-
-
Hörmander, L.1
-
23
-
-
0002362136
-
On the Cauchy problem for the (generalized) Korteweg-de Vries equation
-
of Adv. Math. Suppl. Stud., Academic Press, New York
-
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics, vol. 8 of Adv. Math. Suppl. Stud., Academic Press, New York, 1983, 93-128.
-
(1983)
Studies in Applied Mathematics
, vol.8
, pp. 93-128
-
-
Kato, T.1
-
24
-
-
22544482964
-
Well-posedness of the water-waves equations
-
electronic
-
D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc., 18 (2005), 605-654 (electronic).
-
(2005)
J. Amer. Math. Soc.
, vol.18
, pp. 605-654
-
-
Lannes, D.1
-
25
-
-
84899790304
-
-
of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, Mathematical analysis and asymptotics
-
D. Lannes, The Water Waves Problem, vol. 188 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013, Mathematical analysis and asymptotics.
-
(2013)
The Water Waves Problem
, vol.188
-
-
Lannes, D.1
-
27
-
-
85008506415
-
Well-posedness of two-dimensional hydroelastic waves with mass
-
URL, In press
-
S. Liu and D. Ambrose, Well-posedness of two-dimensional hydroelastic waves with mass, J. Differential Equations, 262 (2017), 4656-4699, URL http://www.sciencedirect.com/ science/article/pii/S0022039616304879, In press.
-
(2017)
J. Differential Equations
, vol.262
, pp. 4656-4699
-
-
Liu, S.1
Ambrose, D.2
-
29
-
-
0025476908
-
The effects of truncation on surface-wave Hamiltonians
-
D. Milder, The effects of truncation on surface-wave Hamiltonians, J. Fluid Mech., 217 (1990), 249-262.
-
(1990)
J. Fluid Mech.
, vol.217
, pp. 249-262
-
-
Milder, D.1
-
30
-
-
78650859910
-
Spectral stability of traveling water waves: Eigenvalue collision, singularities, and direct numerical simulation
-
URL
-
D. Nicholls, Spectral stability of traveling water waves: Eigenvalue collision, singularities, and direct numerical simulation, Phys. D, 240 (2011), 376-381, URL http://www.sciencedirect. com/science/article/pii/S0167278910002630.
-
(2011)
Phys. D
, vol.240
, pp. 376-381
-
-
Nicholls, D.1
-
32
-
-
0001648070
-
Convergence of solutions to nonlinear dispersive equations
-
M. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
-
(1982)
Comm. Partial Differential Equations
, vol.7
, pp. 959-1000
-
-
Schonbek, M.1
-
33
-
-
85063790791
-
-
of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA
-
M. Taylor, Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1991.
-
(1991)
Pseudodifferential Operators and Nonlinear PDE
, vol.100
-
-
Taylor, M.1
-
35
-
-
85106769330
-
Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem
-
of Contemp. Math., Amer. Math. Soc., Providence, RI
-
J. Wilkening and V. Vasan, Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem, in Nonlinear wave equations: analytic and compu- tational techniques, vol. 635 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2015, 175-210.
-
(2015)
Nonlinear Wave Equations: Analytic and Compu- Tational Techniques
, vol.635
, pp. 175-210
-
-
Wilkening, J.1
Vasan, V.2
-
36
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130 (1997), 39-72.
-
(1997)
Invent. Math.
, vol.130
, pp. 39-72
-
-
Wu, S.1
-
37
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.
-
(1999)
J. Amer. Math. Soc.
, vol.12
, pp. 445-495
-
-
Wu, S.1
-
38
-
-
34250447917
-
Stability of periodic waves of finite amplitude on the surface of a deep uid
-
V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep uid, Journal of Applied Mechanics and Technical Physics, 9 (1968), 190-194.
-
(1968)
Journal of Applied Mechanics and Technical Physics
, vol.9
, pp. 190-194
-
-
Zakharov, V.1
|