메뉴 건너뛰기




Volumn 54, Issue 2, 2019, Pages 246-263

A Limited Information Estimator for Dynamic Factor Models

Author keywords

Dynamic factor analysis; robustness; structural equation modeling; structural misspecification; time series analysis

Indexed keywords

ARTICLE; FACTOR ANALYSIS; SIMULATION; STRUCTURAL EQUATION MODELING; TIME SERIES ANALYSIS; ALGORITHM; HUMAN; LATENT CLASS ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 85062418565     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2018.1519406     Document Type: Article
Times cited : (14)

References (72)
  • 1
    • 0002487694 scopus 로고
    • The use of factor analysis in the statistical analysis of multiple time series
    • Anderson, T. W. (1963). The use of factor analysis in the statistical analysis of multiple time series. Psychometrika, 28(1), 1–25. doi: 10.1007/bf02289543
    • (1963) Psychometrika , vol.28 , Issue.1 , pp. 1-25
    • Anderson, T.W.1
  • 3
    • 84937294360 scopus 로고
    • Structural equation models that are nonlinear in latent variables: A least-squares estimator
    • Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables: A least-squares estimator. Sociological Methodology, 25, 223–251. doi: 10.2307/271068
    • (1995) Sociological Methodology , vol.25 , pp. 223-251
    • Bollen, K.A.1
  • 4
    • 0030496688 scopus 로고    scopus 로고
    • An alternative two stage least squares (2SLS) estimator for latent variable equations
    • Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61(1), 109–121. doi: 10.1007/bf02296961
    • (1996) Psychometrika , vol.61 , Issue.1 , pp. 109-121
    • Bollen, K.A.1
  • 5
    • 0345471924 scopus 로고    scopus 로고
    • Two-stage least squares and latent variable models: Simultaneous estimation and robustness to misspecifications
    • Cudeck R., Jöreskog K.G., Sörbom D., (eds), Lincolnwood, IL: Scientific Software International,. (Eds
    • Bollen, K. A. (2001). Two-stage least squares and latent variable models: Simultaneous estimation and robustness to misspecifications. In R., Cudeck, K. G., Jöreskog, & D., Sörbom (Eds.), Structural equation modeling: Present and future: A Festschrift in Honor of Karl Jöreskog. Lincolnwood, IL: Scientific Software International.
    • (2001) Structural equation modeling: Present and future: A Festschrift in Honor of Karl Jöreskog
    • Bollen, K.A.1
  • 7
    • 84864189394 scopus 로고    scopus 로고
    • Instrumental variables in sociology and the social sciences
    • Bollen, K. A. (2012). Instrumental variables in sociology and the social sciences. Annual Review of Sociology, 38(1), 37–72. doi: 10.1146/annurev-soc-081309-150141
    • (2012) Annual Review of Sociology , vol.38 , Issue.1 , pp. 37-72
    • Bollen, K.A.1
  • 8
    • 0036243505 scopus 로고    scopus 로고
    • A note on a two-stage least squares estimator for higher-order factor analyses
    • Bollen, K. A., & Biesanz, J. C. (2002). A note on a two-stage least squares estimator for higher-order factor analyses. Sociological Methods and Research, 30(4), 568–579. doi: 10.1177/0049124102030004004
    • (2002) Sociological Methods and Research , vol.30 , Issue.4 , pp. 568-579
    • Bollen, K.A.1    Biesanz, J.C.2
  • 9
    • 85046896688 scopus 로고    scopus 로고
    • Robustness conditions for MIIV-2sls when the latent variable or measurement model is structurally misspecified
    • –,. Retrieved from 2018-06-25
    • Bollen, K. A., Gates, K. M., & Fisher, Z. (2018). Robustness conditions for MIIV-2sls when the latent variable or measurement model is structurally misspecified. Structural Equation Modeling, 0(0), 1–12. Retrieved from 2018-06-25. doi: 10.1080/10705511.2018.1456341
    • (2018) Structural Equation Modeling , pp. 1-12
    • Bollen, K.A.1    Gates, K.M.2    Fisher, Z.3
  • 10
    • 34547233564 scopus 로고    scopus 로고
    • Latent variable models under misspecification: Two-stage least squares (2sls) and maximum likelihood (ML) estimators
    • Bollen, K. A., Kirby, J. B., Curran, P. J., Paxton, P. M., & Chen, F. (2007). Latent variable models under misspecification: Two-stage least squares (2sls) and maximum likelihood (ML) estimators. Sociological Methods & Research, 36(1), 48–86. doi: 10.1177/0049124107301947
    • (2007) Sociological Methods & Research , vol.36 , Issue.1 , pp. 48-86
    • Bollen, K.A.1    Kirby, J.B.2    Curran, P.J.3    Paxton, P.M.4    Chen, F.5
  • 11
    • 84893961163 scopus 로고    scopus 로고
    • Model-implied instrumental variable generalized method of moments (MIIV-GMM) estimators for latent variable models
    • Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable generalized method of moments (MIIV-GMM) estimators for latent variable models. Psychometrika, 79(1), 20–50. doi: 10.1007/s11336-013-9335-3
    • (2014) Psychometrika , vol.79 , Issue.1 , pp. 20-50
    • Bollen, K.A.1    Kolenikov, S.2    Bauldry, S.3
  • 12
    • 36448944724 scopus 로고    scopus 로고
    • A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables
    • Bollen, K. A., & Maydeu-Olivares, A. (2007). A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables. Psychometrika, 72(3), 309–326. doi: 10.1007/s11336-007-9006-3
    • (2007) Psychometrika , vol.72 , Issue.3 , pp. 309-326
    • Bollen, K.A.1    Maydeu-Olivares, A.2
  • 13
    • 0006803728 scopus 로고    scopus 로고
    • Interactions of latent variables in structural equation models
    • Bollen, K. A., & Paxton, P. (1998). Interactions of latent variables in structural equation models. Structural Equation Modeling, 5(3), 267–293. doi: 10.1080/10705519809540105
    • (1998) Structural Equation Modeling , vol.5 , Issue.3 , pp. 267-293
    • Bollen, K.A.1    Paxton, P.2
  • 16
    • 85004870441 scopus 로고
    • Asymptotically distribution-free methods for the analysis of covariance structures
    • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62–83. doi: 10.1111/j.2044-8317.1984.tb00789.x
    • (1984) British Journal of Mathematical and Statistical Psychology , vol.37 , Issue.1 , pp. 62-83
    • Browne, M.W.1
  • 17
    • 27844464062 scopus 로고    scopus 로고
    • Representing psychological processes with dynamic factor models: some promising uses and extensions of autoregressive moving average time series models
    • Maydeu-Olivares A., McArdle J.J., (eds), Mahwah, NJ: Psychology Press, &,. (Eds
    • Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: some promising uses and extensions of autoregressive moving average time series models. In A., Maydeu-Olivares & J. J., McArdle (Eds.), Contemporary psychometrics. Mahwah, NJ: Psychology Press.
    • (2005) Contemporary psychometrics
    • Browne, M.W.1    Nesselroade, J.R.2
  • 18
    • 85062462892 scopus 로고    scopus 로고
    • Dyfa: Dynamic factor analysis of lagged correlation matrices [Computer software manual]. Retrieved from, (Version 2.03
    • Browne, M. W., & Zhang, G. (2005). Dyfa: Dynamic factor analysis of lagged correlation matrices [Computer software manual]. Retrieved from http://quantrm2.psy.ohio-state.edu/browne/ (Version 2.03)
    • (2005)
    • Browne, M.W.1    Zhang, G.2
  • 19
    • 70449559156 scopus 로고    scopus 로고
    • Developments in the factor analysis of individual time series
    • Cudeck R., MacCallum R.C., (eds), Mahwah, N.J: Routledge, &,. (Eds.), (1 ed
    • Browne, M. W., & Zhang, G. (2007). Developments in the factor analysis of individual time series. In R., Cudeck & R. C., MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (1 ed.). Mahwah, N.J.: Routledge.
    • (2007) Factor analysis at 100: Historical developments and future directions
    • Browne, M.W.1    Zhang, G.2
  • 20
    • 0002815738 scopus 로고
    • The structure of change by p-technique and incremental r-technique
    • Madison: The University of Wisconsin Press,. In
    • Cattell, R. B. (1963). The structure of change by p-technique and incremental r-technique. In Problems in measuring change. Problems in measuring change. Madison: The University of Wisconsin Press.
    • (1963) Problems in measuring change. Problems in measuring change
    • Cattell, R.B.1
  • 21
    • 0000922560 scopus 로고
    • P-technique demonstrated in determining psychophysiological source traits in a normal individual
    • Cattell, R. B., Cattell, A. K. S., & Rhymer, R. M. (1947). P-technique demonstrated in determining psychophysiological source traits in a normal individual. Psychometrika, 12(4), 267–288. doi: 10.1007/bf02288941
    • (1947) Psychometrika , vol.12 , Issue.4 , pp. 267-288
    • Cattell, R.B.1    Cattell, A.K.S.2    Rhymer, R.M.3
  • 22
    • 77951663345 scopus 로고    scopus 로고
    • Equivalence and differences between structural equation modeling and state-space modeling techniques
    • Chow, S.-M., Ho, M-h. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling, 17(2), 303–332. doi: 10.1080/10705511003661553
    • (2010) Structural Equation Modeling , vol.17 , Issue.2 , pp. 303-332
    • Chow, S.-M.1    Ho, M.-H.R.2    Hamaker, E.L.3    Dolan, C.V.4
  • 23
    • 84884981699 scopus 로고    scopus 로고
    • Nonlinear regime-switching state-space (RSSS) models
    • Chow, S.-M., & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika, 78(4), 740–768. doi: 10.1007/s11336-013-9330-8
    • (2013) Psychometrika , vol.78 , Issue.4 , pp. 740-768
    • Chow, S.-M.1    Zhang, G.2
  • 24
    • 79957616672 scopus 로고    scopus 로고
    • Dynamic factor analysis models with time-varying parameters
    • Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011). Dynamic factor analysis models with time-varying parameters. Multivariate Behavioral Research, 46(2), 303–339. doi: 10.1080/00273171.2011.563697
    • (2011) Multivariate Behavioral Research , vol.46 , Issue.2 , pp. 303-339
    • Chow, S.-M.1    Zu, J.2    Shifren, K.3    Zhang, G.4
  • 25
    • 0003171759 scopus 로고
    • Noniterative factor analysis estimators, with algorithms for subset and instrumental variable selection
    • Cudeck, R. (1991). Noniterative factor analysis estimators, with algorithms for subset and instrumental variable selection. Journal of Educational Statistics, 16(1), 35–52. doi: 10.2307/1165098
    • (1991) Journal of Educational Statistics , vol.16 , Issue.1 , pp. 35-52
    • Cudeck, R.1
  • 26
    • 84972475927 scopus 로고
    • Optimal instrumental variable estimator of the AR parameter of an ARMA(1,1)
    • Dolado, J. J. (1990). Optimal instrumental variable estimator of the AR parameter of an ARMA(1,1). Econometric Theory, 6(01), 117–119. doi: 10.1017/s0266466600005016
    • (1990) Econometric Theory , vol.6 , Issue.1 , pp. 117-119
    • Dolado, J.J.1
  • 27
    • 34547457499 scopus 로고    scopus 로고
    • Structural equation modeling of multivariate time series
    • Du Toit, S. H. C., & Browne, M. W. (2007). Structural equation modeling of multivariate time series. Multivariate Behavioral Research, 42(1), 67–101. doi: 10.1080/00273170701340953
    • (2007) Multivariate Behavioral Research , vol.42 , Issue.1 , pp. 67-101
    • Du Toit, S.H.C.1    Browne, M.W.2
  • 28
    • 85062474419 scopus 로고    scopus 로고
    • MIIVsem: Model implied instrumental variable estimation of structural equation models [Computer software manual]. (R package version 0.52
    • Fisher, Z. F., Bollen, K. A., Gates, K. M., & Rönkkö, M. (2017). MIIVsem: Model implied instrumental variable estimation of structural equation models [Computer software manual]. (R package version 0.52)
    • (2017)
    • Fisher, Z.F.1    Bollen, K.A.2    Gates, K.M.3    Rönkkö, M.4
  • 32
    • 33846477146 scopus 로고    scopus 로고
    • ARMA-based SEM when the number of time points T exceeds the number of cases N: Raw data maximum likelihood
    • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2003). ARMA-based SEM when the number of time points T exceeds the number of cases N: Raw data maximum likelihood. Structural Equation Modeling, 10(3), 352–379. doi: 10.1207/s15328007sem1003_2
    • (2003) Structural Equation Modeling , vol.10 , Issue.3 , pp. 352-379
    • Hamaker, E.L.1    Dolan, C.V.2    Molenaar, P.C.M.3
  • 33
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029–1054. doi: 10.2307/1912775
    • (1982) Econometrica , vol.50 , Issue.4 , pp. 1029-1054
    • Hansen, L.P.1
  • 36
    • 84878059452 scopus 로고    scopus 로고
    • Marss: Multivariate autoregressive state-space models for analyzing time-series data
    • Holmes, E. E., Ward, E. J., & Wills, K. (2012). Marss: Multivariate autoregressive state-space models for analyzing time-series data. The R Journal, 4(1), 30.
    • (2012) The R Journal , vol.4 , Issue.1 , pp. 30
    • Holmes, E.E.1    Ward, E.J.2    Wills, K.3
  • 37
    • 0002655948 scopus 로고
    • Statistical models for the study of change in the single case
    • Harris C.W., (ed), Madison: The University of Wisconsin Press,. (Ed
    • Holtzman, W. (1963). Statistical models for the study of change in the single case. In C.W., Harris (Ed.), Problems in measuring change. Problems in measuring change. Madison: The University of Wisconsin Press.
    • (1963) Problems in measuring change. Problems in measuring change
    • Holtzman, W.1
  • 38
    • 84974676919 scopus 로고    scopus 로고
    • A simulation study of polychoric instrumental variable estimation in structural equation models
    • Jin, S., Luo, H., & Yang-Wallentin, F. (2016). A simulation study of polychoric instrumental variable estimation in structural equation models. Structural Equation Modeling, 23(5), 680–694. doi: 10.1080/10705511.2016.1189334
    • (2016) Structural Equation Modeling , vol.23 , Issue.5 , pp. 680-694
    • Jin, S.1    Luo, H.2    Yang-Wallentin, F.3
  • 39
    • 85062477277 scopus 로고    scopus 로고
    • Estimation and model selection dynamic factor analysis., (Unpublished doctoral dissertation). Princeton
    • Justiano, A. (2004). Estimation and model selection in dynamic factor analysis. (Unpublished doctoral dissertation). Princeton.
    • (2004)
    • Justiano, A.1
  • 40
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. doi: 10.1115/1.3662552
    • (1960) Journal of Basic Engineering , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.1
  • 41
    • 69149103381 scopus 로고    scopus 로고
    • Using instrumental variable (IV) tests to evaluate model specification in latent variable structural equation models
    • Kirby, J. B., & Bollen, K. A. (2009). Using instrumental variable (IV) tests to evaluate model specification in latent variable structural equation models. Sociological Methodology, 39(1), 327–355.
    • (2009) Sociological Methodology , vol.39 , Issue.1 , pp. 327-355
    • Kirby, J.B.1    Bollen, K.A.2
  • 42
    • 0018139102 scopus 로고
    • Intraindividual differences dimensions of mood change during pregnancy identified in five P-technique factor analyses
    • Lebo, M. A., & Nesselroade, J. R. (1978). Intraindividual differences dimensions of mood change during pregnancy identified in five P-technique factor analyses. Journal of Research in Personality, 12(2), 205–224. doi: 10.1016/0092-6566(78)90098-3
    • (1978) Journal of Research in Personality , vol.12 , Issue.2 , pp. 205-224
    • Lebo, M.A.1    Nesselroade, J.R.2
  • 43
    • 85062468113 scopus 로고    scopus 로고
    • An EM algorithm for maximum likelihood estimation of process factor analysis models, (Unpublished doctoral dissertation). University of North Carolina at Chapel Hill
    • Lee, T. (2010). An EM algorithm for maximum likelihood estimation of process factor analysis models (Unpublished doctoral dissertation). University of North Carolina at Chapel Hill.
    • (2010)
    • Lee, T.1
  • 45
    • 0011566490 scopus 로고
    • The bias of the two-stage least squares estimator
    • Mikhail, W. M. (1972). The bias of the two-stage least squares estimator. Journal of the American Statistical Association, 67(339), 625–627. doi: 10.1080/01621459.1972.10481263
    • (1972) Journal of the American Statistical Association , vol.67 , Issue.339 , pp. 625-627
    • Mikhail, W.M.1
  • 46
    • 0003029503 scopus 로고
    • Dynamic latent variable models in developmental psychology
    • Eye A.V., Clogg C.C., (eds), Thousand Oaks, CA: SAGE Publications, Inc,. (Eds
    • Molenaar, P. C. M., (1994). Dynamic latent variable models in developmental psychology. In A. V., Eye & C. C., Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 155–180). Thousand Oaks, CA: SAGE Publications, Inc.
    • (1994) Latent variables analysis: Applications for developmental research , pp. 155-180
    • Molenaar, P.C.M.1
  • 47
    • 85062478877 scopus 로고    scopus 로고
    • State space techniques structural equation modeling
    • Molenaar, P. C. M. (2003). State space techniques in structural equation modeling.
    • (2003)
    • Molenaar, P.C.M.1
  • 48
    • 21144464195 scopus 로고
    • Dynamic factor analysis of nonstationary multivariate time series
    • Molenaar, P. C. M., Gooijer, J. G. D., & Schmitz, B. (1992). Dynamic factor analysis of nonstationary multivariate time series. Psychometrika, 57(3), 333–349. doi: 10.1007/bf02295422
    • (1992) Psychometrika , vol.57 , Issue.3 , pp. 333-349
    • Molenaar, P.C.M.1    Gooijer, J.G.D.2    Schmitz, B.3
  • 49
    • 0032221578 scopus 로고    scopus 로고
    • A comparison of pseudo-maximum likelihood and asymptotically distribution-free dynamic factor analysis parameter estimation in fitting covariance-structure models to block-toeplitz matrices representing single-subject multivariate time-series
    • Molenaar, P. C. M., & Nesselroade, J. R. (1998). A comparison of pseudo-maximum likelihood and asymptotically distribution-free dynamic factor analysis parameter estimation in fitting covariance-structure models to block-toeplitz matrices representing single-subject multivariate time-series. Multivariate Behavioral Research, 33(3), 313–342. doi: 10.1207/s15327906mbr3303_1
    • (1998) Multivariate Behavioral Research , vol.33 , Issue.3 , pp. 313-342
    • Molenaar, P.C.M.1    Nesselroade, J.R.2
  • 50
    • 84872590776 scopus 로고    scopus 로고
    • A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis
    • Nestler, S. (2013). A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis. British Journal of Mathematical and Statistical Psychology, 66(1), 127–143. doi: 10.1111/j.2044-8317.2012.02044.x
    • (2013) British Journal of Mathematical and Statistical Psychology , vol.66 , Issue.1 , pp. 127-143
    • Nestler, S.1
  • 51
    • 84897629721 scopus 로고    scopus 로고
    • How the 2SLS/IV estimator can handle equality constraints in structural equation models: A system-of-equations approach
    • Nestler, S. (2014a). How the 2SLS/IV estimator can handle equality constraints in structural equation models: A system-of-equations approach. British Journal of Mathematical and Statistical Psychology, 67(2), 353–369. doi: 10.1111/bmsp.12023
    • (2014) British Journal of Mathematical and Statistical Psychology , vol.67 , Issue.2 , pp. 353-369
    • Nestler, S.1
  • 52
    • 85027953623 scopus 로고    scopus 로고
    • Using instrumental variables to estimate the parameters in unconditional and conditional second-order latent growth
    • Nestler, S. (2014b). Using instrumental variables to estimate the parameters in unconditional and conditional second-order latent growth. Structural Equation Modeling, 22, 461–473. doi: 10.1080/10705511.2014.934948
    • (2014) Structural Equation Modeling , vol.22 , pp. 461-473
    • Nestler, S.1
  • 53
    • 84942197978 scopus 로고    scopus 로고
    • A specification error test that uses instrumental variables to detect latent quadratic and latent interaction effects
    • Nestler, S. (2015). A specification error test that uses instrumental variables to detect latent quadratic and latent interaction effects. Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 542–551. doi: 10.1080/10705511.2014.994744
    • (2015) Structural Equation Modeling: A Multidisciplinary Journal , vol.22 , Issue.4 , pp. 542-551
    • Nestler, S.1
  • 54
    • 84920273961 scopus 로고    scopus 로고
    • A low dimensional Kalman filter for systems with lagged states in the measurement equation
    • Nimark, K. P. (2015). A low dimensional Kalman filter for systems with lagged states in the measurement equation. Economics Letters, 127, 10–13. doi: 10.1016/j.econlet.2014.12.016
    • (2015) Economics Letters , vol.127 , pp. 10-13
    • Nimark, K.P.1
  • 55
    • 85013042307 scopus 로고    scopus 로고
    • Equivalent dynamic models equivalent dynamic models
    • Molenaar, P. C. M. (2017). Equivalent dynamic models equivalent dynamic models. Multivariate Behavioral Research, 52(2), 242–258. doi: 10.1080/00273171.2016.1277681
    • (2017) Multivariate Behavioral Research , vol.52 , Issue.2 , pp. 242-258
    • Molenaar, P.C.M.1
  • 56
    • 84925500744 scopus 로고    scopus 로고
    • Dynamic factor analysis: Modeling person-specific process
    • New York: Oxford University Press
    • Ram, N., Brose, A., & Molenaar, P. C. M. (2013). Dynamic factor analysis: Modeling person-specific process. In The Oxford handbook of quantitative methods in psychology (Vol. 2). New York: Oxford University Press. doi: 10.1093/oxfordhb/9780199934898.013.0021
    • (2013) The Oxford handbook of quantitative methods in psychology , vol.2
    • Ram, N.1    Brose, A.2    Molenaar, P.C.M.3
  • 57
    • 84863306901 scopus 로고    scopus 로고
    • Lavaan: An R package for structural equation modeling
    • –,. Retrieved from
    • Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/ doi: 10.18637/jss.v048.i02
    • (2012) Journal of Statistical Software , vol.48 , Issue.2 , pp. 1-36
    • Rosseel, Y.1
  • 58
    • 0001755034 scopus 로고
    • The estimation of economic relationships using instrumental variables
    • Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26(3), 393–415. doi: 10.2307/1907619
    • (1958) Econometrica , vol.26 , Issue.3 , pp. 393-415
    • Sargan, J.D.1
  • 59
    • 70349206244 scopus 로고    scopus 로고
    • Selecting instrumental variables in a data rich environment
    • Serena, N., & Jushan, B. (2009). Selecting instrumental variables in a data rich environment. Journal of Time Series Econometrics, 1(1), 1–34. doi: 10.2202/1941-1928.1014
    • (2009) Journal of Time Series Econometrics , vol.1 , Issue.1 , pp. 1-34
    • Serena, N.1    Jushan, B.2
  • 60
    • 77956973538 scopus 로고    scopus 로고
    • SEM modeling with singular moment matrices Part I: ML-estimation of time series
    • Singer, H. (2010). SEM modeling with singular moment matrices Part I: ML-estimation of time series. The Journal of Mathematical Sociology, 34(4), 301–320. doi: 10.1080/0022250x.2010.509524
    • (2010) The Journal of Mathematical Sociology , vol.34 , Issue.4 , pp. 301-320
    • Singer, H.1
  • 61
    • 0036790491 scopus 로고    scopus 로고
    • A survey of weak instruments and weak identification in generalized method of moments
    • Stock, J. H., Wright, J. H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20(4), 518–529. doi: 10.1198/073500102288618658
    • (2002) Journal of Business & Economic Statistics , vol.20 , Issue.4 , pp. 518-529
    • Stock, J.H.1    Wright, J.H.2    Yogo, M.3
  • 62
    • 0023363004 scopus 로고
    • Optimal instrumental variable multistep algorithms for estimation of the AR parameters of an ARMA process
    • Stoica, P., Friedlander, B., & Soderstrom, T. (1987). Optimal instrumental variable multistep algorithms for estimation of the AR parameters of an ARMA process. International Journal of Control, 45(6), 2083–2107. doi: 10.1080/00207178708933869
    • (1987) International Journal of Control , vol.45 , Issue.6 , pp. 2083-2107
    • Stoica, P.1    Friedlander, B.2    Soderstrom, T.3
  • 63
    • 0001317248 scopus 로고
    • Optimal instrumental variable estimates of the AR parameters of an ARMA process
    • Stoica, P., Soderstrom, T., & Friedlander, B. (1985). Optimal instrumental variable estimates of the AR parameters of an ARMA process. IEEE Transactions on Automatic Control, 30(11), 1066–1074. doi: 10.1109/tac.1985.1103839
    • (1985) IEEE Transactions on Automatic Control , vol.30 , Issue.11 , pp. 1066-1074
    • Stoica, P.1    Soderstrom, T.2    Friedlander, B.3
  • 64
    • 0031531947 scopus 로고    scopus 로고
    • Fitting arma time series by structural equation models
    • van Buuren, S. (1997). Fitting arma time series by structural equation models. Psychometrika, 62(2), 215–236. doi: 10.1007/bf02295276
    • (1997) Psychometrika , vol.62 , Issue.2 , pp. 215-236
    • van Buuren, S.1
  • 65
    • 84902486566 scopus 로고    scopus 로고
    • Toward a Unified Framework for the Study of Between-Person and Within-Person Structures: Building a Bridge Between Two Research Paradigms
    • Voelkle, M. C., Brose, A., Schmiedek, F., & Lindenberger, U. (2014). Toward a Unified Framework for the Study of Between-Person and Within-Person Structures: Building a Bridge Between Two Research Paradigms. Multivariate Behavioral Research, 49(3), 193–213. doi: 10.1080/00273171.2014.889593
    • (2014) Multivariate Behavioral Research , vol.49 , Issue.3 , pp. 193-213
    • Voelkle, M.C.1    Brose, A.2    Schmiedek, F.3    Lindenberger, U.4
  • 66
    • 84872514308 scopus 로고    scopus 로고
    • Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes
    • Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66(1), 103–126. doi: 10.1111/j.2044-8317.2012.02043.x
    • (2013) British Journal of Mathematical and Statistical Psychology , vol.66 , Issue.1 , pp. 103-126
    • Voelkle, M.C.1    Oud, J.H.L.2
  • 67
    • 84864647300 scopus 로고    scopus 로고
    • Maximum likelihood dynamic factor modeling for arbitrary N and T using SEM
    • Voelkle, M. C., Oud, J. H. L., von Oertzen, T., & Lindenberger, U. (2012). Maximum likelihood dynamic factor modeling for arbitrary N and T using SEM. Structural Equation Modeling, 19(3), 329–350. doi: 10.1080/10705511.2012.687656
    • (2012) Structural Equation Modeling , vol.19 , Issue.3 , pp. 329-350
    • Voelkle, M.C.1    Oud, J.H.L.2    von Oertzen, T.3    Lindenberger, U.4
  • 69
    • 77953531601 scopus 로고    scopus 로고
    • Bootstrap standard error estimates in dynamic factor analysis
    • Zhang, G., & Browne, M. W. (2010). Bootstrap standard error estimates in dynamic factor analysis. Multivariate Behavioral Research, 45(3), 453. doi: 10.1080/00273171.2010.483375
    • (2010) Multivariate Behavioral Research , vol.45 , Issue.3 , pp. 453
    • Zhang, G.1    Browne, M.W.2
  • 70
    • 84942781720 scopus 로고    scopus 로고
    • Analytic standard errors for exploratory process factor analysis
    • Zhang, G., Browne, M. W., Ong, A. D., & Chow, S. M. (2014). Analytic standard errors for exploratory process factor analysis. Psychometrika, 79(3), 444–469. doi: 10.1007/s11336-013-9365-x
    • (2014) Psychometrika , vol.79 , Issue.3 , pp. 444-469
    • Zhang, G.1    Browne, M.W.2    Ong, A.D.3    Chow, S.M.4
  • 71
    • 47949098250 scopus 로고    scopus 로고
    • Comparisons of four methods for estimating a dynamic factor model
    • Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (2008). Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling, 15(3), 377–402. doi: 10.1080/10705510802154281
    • (2008) Structural Equation Modeling , vol.15 , Issue.3 , pp. 377-402
    • Zhang, Z.1    Hamaker, E.L.2    Nesselroade, J.R.3
  • 72
    • 47949126160 scopus 로고    scopus 로고
    • Bayesian estimation of categorical dynamic factor models
    • Zhang, Z., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729–756. doi: 10.1080/00273170701715998
    • (2007) Multivariate Behavioral Research , vol.42 , Issue.4 , pp. 729-756
    • Zhang, Z.1    Nesselroade, J.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.