-
3
-
-
0026992322
-
An analysis of Bayesian classifiers
-
P. Langley, W. Iba, K. Thompson et al., "An analysis of bayesian classifiers, " in Aaai, vol. 90, 1992, pp. 223-228.
-
(1992)
AAAI
, vol.90
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
4
-
-
0028461417
-
Automated learning of decision rules for text categorization
-
C. Apté, F. Damerau, and S. M. Weiss, "Automated learning of decision rules for text categorization, " ACM Transactions on Information Systems (TOIS), vol. 12, no. 3, pp. 233-251, 1994.
-
(1994)
ACM Transactions on Information Systems (TOIS)
, vol.12
, Issue.3
, pp. 233-251
-
-
Apté, C.1
Damerau, F.2
Weiss, S.M.3
-
5
-
-
85060809856
-
On optimal decision rules in decision tables. university of regina
-
S. Wong and W. Ziarko, On optimal decision rules in decision tables. University of Regina, Computer Science Department, 1985.
-
(1985)
Computer Science Department
-
-
Wong, S.1
Ziarko, W.2
-
6
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan, "Induction of decision trees, " Machine learning, vol. 1, no. 1, pp. 81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
9
-
-
75149176174
-
Ensemble-based classifiers
-
L. Rokach, "Ensemble-based classifiers, " Artificial Intelligence Review, vol. 33, no. 1, pp. 1-39, 2010.
-
(2010)
Artificial Intelligence Review
, vol.33
, Issue.1
, pp. 1-39
-
-
Rokach, L.1
-
10
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
0030211964
-
Bagging predictors
-
-, "Bagging predictors, " Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
12
-
-
84983110889
-
A desicion-theoretic generalization of on-line learning and an application to boosting
-
Springer
-
Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in European conference on computational learning theory. Springer, 1995, pp. 23-37.
-
(1995)
European Conference on Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Y. Freund, R. E. Schapire et al., "Experiments with a new boosting algorithm, " in Icml, vol. 96, 1996, pp. 148-156.
-
(1996)
ICML
, vol.96
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
14
-
-
85057943047
-
Random decision forests
-
IEEE
-
T. K. Ho, "Random decision forests, " in Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on, vol. 1. IEEE, 1995, pp. 278-282.
-
(1995)
Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on
, vol.1
, pp. 278-282
-
-
Ho, T.K.1
-
15
-
-
0032139235
-
The random subspace method for constructing decision forests
-
-, "The random subspace method for constructing decision forests, " IEEE transactions on pattern analysis and machine intelligence, vol. 20, no. 8, pp. 832-844, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
16
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method, " IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 10, pp. 1619-1630, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
17
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
Springer
-
L. I. Kuncheva and J. J. Rodŕiguez, "An experimental study on rotation forest ensembles, " in MCS. Springer, 2007, pp. 459-468.
-
(2007)
MCS
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodŕiguez, J.J.2
-
18
-
-
44449124996
-
Rotboost: A technique for combining rotation forest and adaboost
-
C.-X. Zhang and J.-S. Zhang, "Rotboost: A technique for combining rotation forest and adaboost, " Pattern recognition letters, vol. 29, no. 10, pp. 1524-1536, 2008.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.10
, pp. 1524-1536
-
-
Zhang, C.-X.1
Zhang, J.-S.2
-
19
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and ran-domization
-
T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and ran-domization, " Machine learning, vol. 40, no. 2, pp. 139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
20
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees, " Machine learning, vol. 63, no. 1, pp. 3-42, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
21
-
-
0028737912
-
Weka: A machine learning workbench
-
IEEE
-
G. Holmes, A. Donkin, and I. H. Witten, "Weka: A machine learning workbench, " in Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on. IEEE, 1994, pp. 357-361.
-
(1994)
Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on
, pp. 357-361
-
-
Holmes, G.1
Donkin, A.2
Witten, I.H.3
-
22
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Stanford, CA
-
R. Kohavi et al., "A study of cross-validation and bootstrap for accuracy estimation and model selection, " in Ijcai, vol. 14, no. 2. Stanford, CA, 1995, pp. 1137-1145.
-
(1995)
IJCAI
, vol.14
, Issue.2
, pp. 1137-1145
-
-
Kohavi, R.1
-
24
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?" The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133-3181, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
|