메뉴 건너뛰기




Volumn 136, Issue , 2018, Pages 35-43

An approach for dynamic detection of inefficient supercomputer applications

Author keywords

anomaly detection; efficiency analysis; high performance computing; LSTM; parallel program

Indexed keywords

ANOMALY DETECTION; DECISION TREES; EFFICIENCY; LONG SHORT-TERM MEMORY; PETROLEUM PROSPECTING; SUPERCOMPUTERS;

EID: 85060481695     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2018.08.235     Document Type: Conference Paper
Times cited : (16)

References (25)
  • 2
    • 75449097851 scopus 로고    scopus 로고
    • Toward automated anomaly identification in large-scale systems
    • doi:10.1109/TPDS.2009.52
    • Lan Z., Zheng Z., and Li Y. Toward automated anomaly identification in large-scale systems IEEE Transactions on Parallel and Distributed Systems 21 2010 174 187 doi:10.1109/TPDS.2009.52
    • (2010) IEEE Transactions on Parallel and Distributed Systems , vol.21 , pp. 174-187
    • Lan, Z.1    Zheng, Z.2    Li, Y.3
  • 3
    • 84891505397 scopus 로고    scopus 로고
    • Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures
    • doi:10.1109/SRDS.2013.29
    • Guan, Q., Fu, S., 2013. Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures, in: 2013 IEEE 32nd International Symposium on Reliable Distributed Systems, pp. 205-214. doi:10.1109/SRDS.2013.29.
    • (2013) 2013 IEEE 32nd International Symposium on Reliable Distributed Systems , pp. 205-214
    • Guan, Q.1    Fu, S.2
  • 4
    • 84857219983 scopus 로고    scopus 로고
    • Performance metric selection for autonomic anomaly detection on cloud computing systems
    • IEEE doi:10.1109/GLOCOM.2011.6134532
    • Fu S. Performance metric selection for autonomic anomaly detection on cloud computing systems GLOBECOM 2011 IEEE 1 5 doi:10.1109/GLOCOM.2011.6134532
    • (2011) GLOBECOM , pp. 1-5
    • Fu, S.1
  • 13
    • 84984424179 scopus 로고
    • Arima model building and the time series analysis approach to forecasting
    • doi:10.1002/for.3980020104
    • Newbold P. Arima model building and the time series analysis approach to forecasting Journal of Forecasting 2 1983 23 35 doi:10.1002/for.3980020104
    • (1983) Journal of Forecasting , vol.2 , pp. 23-35
    • Newbold, P.1
  • 14
    • 0000800741 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Elsevier doi:10.1109/5.18626
    • Rabiner L.R. A tutorial on hidden markov models and selected applications in speech recognition Readings in speech recognition 1990 Elsevier 267 296 doi:10.1109/5.18626
    • (1990) Readings in Speech Recognition , pp. 267-296
    • Rabiner, L.R.1
  • 15
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • doi:10.1162/neco.1997.9.8.1735
    • Hochreiter S., and Schmidhuber J. Long short-term memory Neural computation 9 1997 1735 1780 doi:10.1162/neco.1997.9.8.1735
    • (1997) Neural Computation , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 17
    • 79957533818 scopus 로고    scopus 로고
    • Weighted dynamic time warping for time series classification
    • Jeong Y.-S., Jeong M.K., and Omitaomu O.A. Weighted dynamic time warping for time series classification Pattern Recognition 44 9 2011 2231 2240
    • (2011) Pattern Recognition , vol.44 , Issue.9 , pp. 2231-2240
    • Jeong, Y.-S.1    Jeong, M.K.2    Omitaomu, O.A.3
  • 19
    • 85044594514 scopus 로고    scopus 로고
    • A comparative study of the performance of hmm, dnn, and rnn based speech synthesis systems trained on very large speaker-dependent corpora
    • Wang, X., Takaki, S., Yamagishi, J., 2016. A comparative study of the performance of hmm, dnn, and rnn based speech synthesis systems trained on very large speaker-dependent corpora, in: 9th ISCA Speech Synthesis Workshop, pp. 125-128.
    • (2016) 9th ISCA Speech Synthesis Workshop , pp. 125-128
    • Wang, X.1    Takaki, S.2    Yamagishi, J.3
  • 20
    • 85009458342 scopus 로고    scopus 로고
    • Comparing hidden markov models and long short term memory neural networks for learning action representations
    • Springer doi:10.1007/978-3-319-51469-7-8
    • Panzner M., and Cimiano P. Comparing hidden markov models and long short term memory neural networks for learning action representations International Workshop on Machine Learning, Optimization and Big Data 2016 Springer 94 105 doi:10.1007/978-3-319-51469-7-8
    • (2016) International Workshop on Machine Learning, Optimization and Big Data , pp. 94-105
    • Panzner, M.1    Cimiano, P.2
  • 21
    • 34250704813 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • ACM
    • Graves, A., Ferńandez, S., Gomez, F., and Schmidhuber, J., 2006. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks, in: Proceedings of the 23rd international conference on Machine learning, pp. 369-376. ACM.
    • (2006) Proceedings of the 23rd International Conference on Machine Learning , pp. 369-376
    • Graves, A.1
  • 24
    • 85040011060 scopus 로고    scopus 로고
    • Time series classification using deep learning for process planning: A case from the process industry
    • doi:10.1016/j.procs.2017.09.066
    • Mehdiyev N., Lahann J., Emrich A., Enke D., Fettke P., and Loos P. Time series classification using deep learning for process planning: A case from the process industry Procedia Computer Science 114 2017 242 249 doi:10.1016/j.procs.2017.09.066
    • (2017) Procedia Computer Science , vol.114 , pp. 242-249
    • Mehdiyev, N.1    Lahann, J.2    Emrich, A.3    Enke, D.4    Fettke, P.5    Loos, P.6
  • 25
    • 84971640658 scopus 로고    scopus 로고
    • Chollet, F., et al., 2015. Keras. https://keras.io.
    • (2015) Keras
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.