-
1
-
-
85026272655
-
Diagnosing performance variations in hpc applications using machine learning
-
doi:10.1007/978-3-319-58667-0-19
-
Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele, M., Coskun, A.K., 2017. Diagnosing performance variations in hpc applications using machine learning, in: International Supercomputing Conference, Springer. pp. 355-373. doi:10.1007/978-3-319-58667-0-19.
-
(2017)
International Supercomputing Conference, Springer
, pp. 355-373
-
-
Tuncer, O.1
Ates, E.2
Zhang, Y.3
Turk, A.4
Brandt, J.5
Leung, V.J.6
Egele, M.7
Coskun, A.K.8
-
2
-
-
75449097851
-
Toward automated anomaly identification in large-scale systems
-
doi:10.1109/TPDS.2009.52
-
Lan Z., Zheng Z., and Li Y. Toward automated anomaly identification in large-scale systems IEEE Transactions on Parallel and Distributed Systems 21 2010 174 187 doi:10.1109/TPDS.2009.52
-
(2010)
IEEE Transactions on Parallel and Distributed Systems
, vol.21
, pp. 174-187
-
-
Lan, Z.1
Zheng, Z.2
Li, Y.3
-
3
-
-
84891505397
-
Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures
-
doi:10.1109/SRDS.2013.29
-
Guan, Q., Fu, S., 2013. Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures, in: 2013 IEEE 32nd International Symposium on Reliable Distributed Systems, pp. 205-214. doi:10.1109/SRDS.2013.29.
-
(2013)
2013 IEEE 32nd International Symposium on Reliable Distributed Systems
, pp. 205-214
-
-
Guan, Q.1
Fu, S.2
-
4
-
-
84857219983
-
Performance metric selection for autonomic anomaly detection on cloud computing systems
-
IEEE doi:10.1109/GLOCOM.2011.6134532
-
Fu S. Performance metric selection for autonomic anomaly detection on cloud computing systems GLOBECOM 2011 IEEE 1 5 doi:10.1109/GLOCOM.2011.6134532
-
(2011)
GLOBECOM
, pp. 1-5
-
-
Fu, S.1
-
5
-
-
85044464564
-
Hpc usage behavior analysis and performance estimation with machine learning techniques
-
Zhang, H., You, H., Hadri, B., Fahey, M., 2012. Hpc usage behavior analysis and performance estimation with machine learning techniques, in: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). p. 1.
-
(2012)
Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), the Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)
, pp. 1
-
-
Zhang, H.1
You, H.2
Hadri, B.3
Fahey, M.4
-
7
-
-
85044743327
-
An approach for detecting abnormal parallel applications based on time series analysis methods
-
doi:10.1007/978-3-319-78024-5-32
-
Shaykhislamov, D., Voevodin, V., 2017. An approach for detecting abnormal parallel applications based on time series analysis methods, in: International Conference on Parallel Processing and Applied Mathematics, Springer. pp. 359-369. doi:10.1007/978-3-319-78024-5-32.
-
(2017)
International Conference on Parallel Processing and Applied Mathematics, Springer
, pp. 359-369
-
-
Shaykhislamov, D.1
Voevodin, V.2
-
13
-
-
84984424179
-
Arima model building and the time series analysis approach to forecasting
-
doi:10.1002/for.3980020104
-
Newbold P. Arima model building and the time series analysis approach to forecasting Journal of Forecasting 2 1983 23 35 doi:10.1002/for.3980020104
-
(1983)
Journal of Forecasting
, vol.2
, pp. 23-35
-
-
Newbold, P.1
-
14
-
-
0000800741
-
A tutorial on hidden markov models and selected applications in speech recognition
-
Elsevier doi:10.1109/5.18626
-
Rabiner L.R. A tutorial on hidden markov models and selected applications in speech recognition Readings in speech recognition 1990 Elsevier 267 296 doi:10.1109/5.18626
-
(1990)
Readings in Speech Recognition
, pp. 267-296
-
-
Rabiner, L.R.1
-
15
-
-
0031573117
-
Long short-term memory
-
doi:10.1162/neco.1997.9.8.1735
-
Hochreiter S., and Schmidhuber J. Long short-term memory Neural computation 9 1997 1735 1780 doi:10.1162/neco.1997.9.8.1735
-
(1997)
Neural Computation
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
16
-
-
84961786644
-
Long short term memory networks for anomaly detection in time series
-
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., 2015. Long short term memory networks for anomaly detection in time series, in: Proceedings, Presses universitaires de Louvain. p. 89.
-
(2015)
Proceedings, Presses Universitaires de Louvain
, pp. 89
-
-
Malhotra, P.1
Vig, L.2
Shroff, G.3
Agarwal, P.4
-
17
-
-
79957533818
-
Weighted dynamic time warping for time series classification
-
Jeong Y.-S., Jeong M.K., and Omitaomu O.A. Weighted dynamic time warping for time series classification Pattern Recognition 44 9 2011 2231 2240
-
(2011)
Pattern Recognition
, vol.44
, Issue.9
, pp. 2231-2240
-
-
Jeong, Y.-S.1
Jeong, M.K.2
Omitaomu, O.A.3
-
19
-
-
85044594514
-
A comparative study of the performance of hmm, dnn, and rnn based speech synthesis systems trained on very large speaker-dependent corpora
-
Wang, X., Takaki, S., Yamagishi, J., 2016. A comparative study of the performance of hmm, dnn, and rnn based speech synthesis systems trained on very large speaker-dependent corpora, in: 9th ISCA Speech Synthesis Workshop, pp. 125-128.
-
(2016)
9th ISCA Speech Synthesis Workshop
, pp. 125-128
-
-
Wang, X.1
Takaki, S.2
Yamagishi, J.3
-
20
-
-
85009458342
-
Comparing hidden markov models and long short term memory neural networks for learning action representations
-
Springer doi:10.1007/978-3-319-51469-7-8
-
Panzner M., and Cimiano P. Comparing hidden markov models and long short term memory neural networks for learning action representations International Workshop on Machine Learning, Optimization and Big Data 2016 Springer 94 105 doi:10.1007/978-3-319-51469-7-8
-
(2016)
International Workshop on Machine Learning, Optimization and Big Data
, pp. 94-105
-
-
Panzner, M.1
Cimiano, P.2
-
21
-
-
34250704813
-
Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
-
ACM
-
Graves, A., Ferńandez, S., Gomez, F., and Schmidhuber, J., 2006. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks, in: Proceedings of the 23rd international conference on Machine learning, pp. 369-376. ACM.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 369-376
-
-
Graves, A.1
-
23
-
-
85019961873
-
Every moment counts: Dense detailed labeling of actions in complex videos
-
doi:10.1007/s11263-017-1013-y
-
Yeung S., Russakovsky O., Jin N., Andriluka M., Mori G., and Fei-Fei L. Every moment counts: Dense detailed labeling of actions in complex videos International Journal of Computer Vision 126 2018 375 389 doi:10.1007/s11263-017-1013-y
-
(2018)
International Journal of Computer Vision
, vol.126
, pp. 375-389
-
-
Yeung, S.1
Russakovsky, O.2
Jin, N.3
Andriluka, M.4
Mori, G.5
Fei-Fei, L.6
-
24
-
-
85040011060
-
Time series classification using deep learning for process planning: A case from the process industry
-
doi:10.1016/j.procs.2017.09.066
-
Mehdiyev N., Lahann J., Emrich A., Enke D., Fettke P., and Loos P. Time series classification using deep learning for process planning: A case from the process industry Procedia Computer Science 114 2017 242 249 doi:10.1016/j.procs.2017.09.066
-
(2017)
Procedia Computer Science
, vol.114
, pp. 242-249
-
-
Mehdiyev, N.1
Lahann, J.2
Emrich, A.3
Enke, D.4
Fettke, P.5
Loos, P.6
-
25
-
-
84971640658
-
-
Chollet, F., et al., 2015. Keras. https://keras.io.
-
(2015)
Keras
-
-
Chollet, F.1
|