메뉴 건너뛰기




Volumn , Issue , 2018, Pages 2314-2321

DeepHit: A deep learning approach to survival analysis with competing risks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; DEEP NEURAL NETWORKS; RANDOM PROCESSES; RISK PERCEPTION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 85060469637     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (512)

References (29)
  • 3
    • 30944433977 scopus 로고    scopus 로고
    • A time-dependent discrimination index for survival data
    • Antolini, L.; Boracchi, P.; and Biganzoli, E. 2005. A time-dependent discrimination index for survival data. Statistics in Medicine 24:3927-3944.
    • (2005) Statistics in Medicine , vol.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 7
    • 0026818056 scopus 로고
    • Models for variable-stress accelerated life testing experiments based on wiener processes and the inverse Gaussian distribution
    • Doksum, K. A., and Hyland, A. 1992. Models for variable-stress accelerated life testing experiments based on wiener processes and the inverse gaussian distribution. American Statistical Association and American Society for Quality 34(1):74-82.
    • (1992) American Statistical Association and American Society for Quality , vol.34 , Issue.1 , pp. 74-82
    • Doksum, K.A.1    Hyland, A.2
  • 8
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi, D., and Simon, R. 1995. A neural network model for survival data. Statistics in Medicine 14:73-82.
    • (1995) Statistics in Medicine , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 10
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine, J. P., and Gray, R. J. 1999. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94(446):496-509.
    • (1999) Journal of the American Statistical Association , vol.94 , Issue.446 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2
  • 11
    • 0033616908 scopus 로고    scopus 로고
    • Estimation of failure probabilities in the presence of competing risks: New representations of old estimators
    • Gooley, T. A.; Leisenring, W.; Crowley, J.; and Storer, B. E. 1999. Estimation of failure probabilities in the presence of competing risks: New representations of old estimators. Statistics in Medicine 18(6):695-706.
    • (1999) Statistics in Medicine , vol.18 , Issue.6 , pp. 695-706
    • Gooley, T.A.1    Leisenring, W.2    Crowley, J.3    Storer, B.E.4
  • 12
    • 84871350344 scopus 로고    scopus 로고
    • Applying competing risks regression models: An overview
    • Haller, B.; Schmidt, G.; and Ulm, K. 2013. Applying competing risks regression models: an overview. Lifetime Data Analysis 19:33-58.
    • (2013) Lifetime Data Analysis , vol.19 , pp. 33-58
    • Haller, B.1    Schmidt, G.2    Ulm, K.3
  • 18
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • Kaplan, E. L., and Meier, P. 1958. Nonparametric estimation from incomplete observations. American Statistical Association 53(282):457-481.
    • (1958) American Statistical Association , vol.53 , Issue.282 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 20
    • 84961773397 scopus 로고    scopus 로고
    • Shared risk factors in cardiovascular disease and cancer
    • Koene, R. J.; Prizment, A. E.; Blaes, A.; and Konety, S. H. 2016. Shared risk factors in cardiovascular disease and cancer. Circulation 133:1104-1114.
    • (2016) Circulation , vol.133 , pp. 1104-1114
    • Koene, R.J.1    Prizment, A.E.2    Blaes, A.3    Konety, S.H.4
  • 22
    • 34249306163 scopus 로고    scopus 로고
    • Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary
    • Lee, M.-L. T., and Whitmore, G. A. 2006. Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary. Statistical Science 21(4):501-513.
    • (2006) Statistical Science , vol.21 , Issue.4 , pp. 501-513
    • Lee, M.-L.T.1    Whitmore, G.A.2
  • 23
    • 77953982520 scopus 로고    scopus 로고
    • Proportional hazards and threshold regression: Their theoretical and practical connections
    • Lee, M.-L. T., and Whitmore, G. A. 2010. Proportional hazards and threshold regression: Their theoretical and practical connections. Lifetime Data Analysis 16:196214.
    • (2010) Lifetime Data Analysis , vol.16 , pp. 196214
    • Lee, M.-L.T.1    Whitmore, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.