-
1
-
-
84921831084
-
Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality
-
C. Aistleitner and J. Dick. Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality. Acta Arithmetica, 167(2):143–171, 2015.
-
(2015)
Acta Arithmetica
, vol.167
, Issue.2
, pp. 143-171
-
-
Aistleitner, C.1
Dick, J.2
-
3
-
-
84929706509
-
On the approximate calculation of multiple integrals
-
N.S. Bakhvalov. On the approximate calculation of multiple integrals. Journal of Complexity, 31(4):502-516, 2015.
-
(2015)
Journal of Complexity
, vol.31
, Issue.4
, pp. 502-516
-
-
Bakhvalov, N.S.1
-
6
-
-
79957984911
-
Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands
-
J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. The Annals of Statistics, 39(3):1372–1398, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.3
, pp. 1372-1398
-
-
Dick, J.1
-
7
-
-
84875913709
-
High-dimensional integration: The quasi-monte carlo way
-
J. Dick, F.Y. Kuo, and I.H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica, 22:133–288, 2013.
-
(2013)
Acta Numerica
, vol.22
, pp. 133-288
-
-
Dick, J.1
Kuo, F.Y.2
Sloan, I.H.3
-
10
-
-
84905677310
-
Pseudo-marginal bayesian inference for gaussian processes. Pattern analysis and machine intelligence
-
M. Filippone and M. Girolami. Pseudo-Marginal Bayesian Inference for Gaussian Processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(11):2214–2226, 2014.
-
(2014)
IEEE Transactions on
, vol.36
, Issue.11
, pp. 2214-2226
-
-
Filippone, M.1
Girolami, M.2
-
14
-
-
22544472182
-
Control variates for quasi-monte carlo
-
F.J. Hickernell, C. Lemieux, and A.B. Owen. Control variates for quasi-Monte Carlo. Statistical Science, 20(1):1–31, 2005.
-
(2005)
Statistical Science
, vol.20
, Issue.1
, pp. 1-31
-
-
Hickernell, F.J.1
Lemieux, C.2
Owen, A.B.3
-
18
-
-
0000382131
-
On the l2-discrepancy for anchored boxes
-
J. Matoušek. On the L2-discrepancy for Anchored Boxes. J. Complex., 14(4):527–556, 1998.
-
(1998)
J. Complex.
, vol.14
, Issue.4
, pp. 527-556
-
-
Matoušek, J.1
-
21
-
-
84983247394
-
The controlled thermodynamic integral for bayesian model evidence evaluation
-
To appear
-
C.J. Oates, T. Papamarkou and M. Girolami. The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation. J. Am. Stat. Assoc., 2016. To appear.
-
(2016)
J. Am. Stat. Assoc.
-
-
Oates, C.J.1
Papamarkou, T.2
Girolami, M.3
-
24
-
-
84965154078
-
A constraint on extensible quadrature rules
-
To appear
-
A.B. Owen. A constraint on extensible quadrature rules. Numerische Mathematik, 2015. To appear.
-
(2015)
Numerische Mathematik
-
-
Owen, A.B.1
-
26
-
-
34147137805
-
An introduction to exponential random graph (p*) models for social networks
-
G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2):173–191, 2007.
-
(2007)
Social Networks
, vol.29
, Issue.2
, pp. 173-191
-
-
Robins, G.1
Pattison, P.2
Kalish, Y.3
Lusher, D.4
-
27
-
-
33646731541
-
Kernel techniques: From machine learning to meshless methods
-
R. Schaback and H. Wendland. Kernel techniques: from machine learning to meshless methods. Acta Numerica, 15:543–639, 2006.
-
(2006)
Acta Numerica
, vol.15
, pp. 543-639
-
-
Schaback, R.1
Wendland, H.2
-
29
-
-
70449534072
-
Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross
-
W. Sickel and T. Ullrich. Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross. Journal of Approximation Theory, 161(2):748–786, 2009.
-
(2009)
Journal of Approximation Theory
, vol.161
, Issue.2
, pp. 748-786
-
-
Sickel, W.1
Ullrich, T.2
-
30
-
-
38149136576
-
A hilbert space embedding for distributions
-
Springer
-
A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding for distributions. In Algorithmic Learning Theory, pages 13–31. Springer, 2007.
-
(2007)
Algorithmic Learning Theory
, pp. 13-31
-
-
Smola, A.1
Gretton, A.2
Song, L.3
Schölkopf, B.4
-
31
-
-
84880883265
-
Using supervised learning to improve monte carlo integral estimation
-
B. Tracey, D. Wolpert, and J.J. Alonso. Using Supervised Learning to Improve Monte Carlo Integral Estimation. AIAA Journal, 51(8):2015–2023, 2013.
-
(2013)
AIAA Journal
, vol.51
, Issue.8
, pp. 2015-2023
-
-
Tracey, B.1
Wolpert, D.2
Alonso, J.J.3
-
32
-
-
0002891388
-
Locally weighted projection regression: An o(n) algorithm for incremental real time learning in high dimensional space
-
S. Vijayakumar and S. Schaal. Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space. In International Conference on Machine Learning, volume 16, pages 1079–1086, 2000.
-
(2000)
International Conference on Machine Learning
, vol.16
, pp. 1079-1086
-
-
Vijayakumar, S.1
Schaal, S.2
-
33
-
-
84861364719
-
Enhancing quasi-monte carlo methods by exploiting additive approximation for problems in finance
-
X. Wang. Enhancing Quasi-Monte Carlo Methods by Exploiting Additive Approximation for Problems in Finance. SIAM Journal of Scientific Computing, 34(1):A283–A308, 2012.
-
(2012)
SIAM Journal of Scientific Computing
, vol.34
, Issue.1
, pp. A283-A308
-
-
Wang, X.1
-
34
-
-
0346847275
-
Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
-
H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995.
-
(1995)
Advances in Computational Mathematics
, vol.4
, Issue.1
, pp. 389-396
-
-
Wendland, H.1
-
35
-
-
84965105965
-
Quasi-Monte carlo feature maps for shift-invariant kernels
-
J. Yang, V. Sindhwani, H. Avron, and M. Mahoney. Quasi-Monte Carlo feature maps for shift-invariant kernels. In International Conference on Machine Learning, volume 31, pages 485–493, 2014.
-
(2014)
International Conference on Machine Learning
, vol.31
, pp. 485-493
-
-
Yang, J.1
Sindhwani, V.2
Avron, H.3
Mahoney, M.4
|