-
1
-
-
0002060375
-
-
Approximate computation of multiple integrals. Vestnik Moskov. Univ., MR0115275
-
BAHVALOV, N. S. (1959). Approximate computation of multiple integrals. Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 3-18. MR0115275
-
(1959)
Ser. Mat. Meh. Astr. Fiz Him.
, vol.1959
, pp. 3-18
-
-
Bahvalov, N.S.1
-
2
-
-
84972541057
-
A class of generalized Walsh functions
-
MR0068659
-
CHRESTENSON, H. E. (1955). A class of generalized Walsh functions. Pacific J. Math. 5 17-31. MR0068659
-
(1955)
Pacific J Math.
, vol.5
, pp. 17-31
-
-
Chrestenson, H.E.1
-
3
-
-
44649151911
-
Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions
-
(electronic). MR2346374
-
DICK, J. (2007). Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45 2141-2176 (electronic). MR2346374
-
(2007)
SIAM J. Numer Anal.
, vol.45
, pp. 2141-2176
-
-
Dick, J.1
-
4
-
-
55349128231
-
Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order
-
MR2391005
-
DICK, J. (2008). Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46 1519-1553. MR2391005
-
(2008)
SIAM J. Numer Anal.
, vol.46
, pp. 1519-1553
-
-
Dick, J.1
-
5
-
-
84904098688
-
On quasi-Monte Carlo rules achieving higher order convergence
-
(P. L'Ecuyer and A. Owen, eds.), Springer, Berlin
-
DICK, J. (2009). On quasi-Monte Carlo rules achieving higher order convergence. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L'Ecuyer and A. Owen, eds.) 73-96. Springer, Berlin.
-
(2009)
Monte Carlo and Quasi-Monte Carlo Methods 2008
, pp. 73-96
-
-
Dick, J.1
-
7
-
-
0001015105
-
Random approximation in numerical analysis
-
Dekker, New York. MR1241675
-
HEINRICH, S. (1994). Random approximation in numerical analysis. In Functional Analysis (Essen, 1991) (K. D. Bierstedt, A. Pietsch,W. M. Ruess and D. Vogt, eds.). Lecture Notes in Pure and Appl. Math. 150 123-171. Dekker, New York. MR1241675
-
(1994)
Functional Analysis (Essen, 1991) (K. D. Bierstedt, A. Pietsch,W. M. Ruess and D. Vogt, Eds.). Lecture Notes in Pure and App Math.
, vol.150
, pp. 123-171
-
-
Heinrich, S.1
-
8
-
-
0030259017
-
The mean square discrepancy of randomized nets
-
HICKERNELL, F. J. (1996). The mean square discrepancy of randomized nets. ACM Trans. Modeling Comput. Simul. 6 274-296.
-
(1996)
ACM Trans. Modeling Comput Simul.
, vol.6
, pp. 274-296
-
-
Hickernell, F.J.1
-
9
-
-
84954490772
-
Recent advances in randomized quasi-Monte Carlo methods
-
Kluwer, Boston, MA. MR1893290
-
L'ECUYER, P. and LEMIEUX, C. (2002). Recent advances in randomized quasi-Monte Carlo methods. In Modeling Uncertainty (M. Dror, P. L'Ecuyer and F. Szidarovszki, eds.). Internat. Ser. Oper. Res. Management Sci. 46 419-474. Kluwer, Boston, MA. MR1893290
-
(2002)
Modeling Uncertainty (M. Dror, P. L'Ecuyer and F. Szidarovszki, Eds.). Internat. Ser. Oper. Res Management Sci.
, vol.46
, pp. 419-474
-
-
L'ecuyer, P.1
Lemieux, C.2
-
10
-
-
0000382131
-
On the L2-discrepancy for anchored boxes
-
MR1659004
-
MATOUŠEK, J. (1998). On the L2-discrepancy for anchored boxes. J. Complexity 14 527-556. MR1659004
-
(1998)
J Complexity
, vol.14
, pp. 527-556
-
-
Matoušek, J.1
-
13
-
-
0003211763
-
Deterministic and stochastic error bounds in numerical analysis
-
Springer, Berlin. MR0971255
-
NOVAK, E. (1988). Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes in Math. 1349. Springer, Berlin. MR0971255
-
(1988)
Lecture Notes in Math.
, vol.1349
-
-
Novak, E.1
-
14
-
-
0001491057
-
Randomly permuted (t,m, s)-nets and (t, s)-sequences
-
Springer, New York. MR1445791
-
OWEN, A. B. (1995). Randomly permuted (t,m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas, NV, 1994) (H. Niederreiter and J.-S. Shiue, eds.). Lecture Notes in Statist. 106 299-317. Springer, New York. MR1445791
-
(1995)
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas, NV, 1994) (H. Niederreiter and J.-S. Shiue, Eds. Lecture Notes in Statist.
, vol.106
, pp. 299-317
-
-
Owen, A.B.1
-
15
-
-
0013036522
-
Monte carlo variance of scrambled net quadrature
-
OWEN, A. B. (1997).Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34 1884-1910. MR1472202 (Pubitemid 127463576)
-
(1997)
SIAM Journal on Numerical Analysis
, vol.34
, Issue.5
, pp. 1884-1910
-
-
Owen, A.B.1
-
16
-
-
0031509503
-
Scrambled net variance for integrals of smooth functions
-
MR1463564
-
OWEN, A. B. (1997). Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 1541-1562. MR1463564
-
(1997)
Ann Statist.
, vol.25
, pp. 1541-1562
-
-
Owen, A.B.1
-
17
-
-
4243059534
-
Variance with alternative scramblings of digital nets
-
OWEN, A. B. (2003). Variance with alternative scramblings of digital nets. ACM Trans. Model. Comp. Simul. 13 363-378.
-
(2003)
ACM Trans. Model. Comp Simul.
, vol.13
, pp. 363-378
-
-
Owen, A.B.1
-
18
-
-
54349106163
-
Local antithetic sampling with scrambled nets
-
MR2458189
-
OWEN, A. B. (2008). Local antithetic sampling with scrambled nets. Ann. Statist. 36 2319-2343. MR2458189
-
(2008)
Ann Statist.
, vol.36
, pp. 2319-2343
-
-
Owen, A.B.1
-
19
-
-
0348233983
-
I-binomial scrambling of digital nets and sequences
-
DOI 10.1016/S0885-064X(03)00035-9
-
TEZUKA, S. and FAURE, H. (2003). I -binomial scrambling of digital nets and sequences. J. Complexity 19 744-757. MR2040428 (Pubitemid 38012036)
-
(2003)
Journal of Complexity
, vol.19
, Issue.6
, pp. 744-757
-
-
Tezuka, S.1
Faure, H.2
-
20
-
-
0001946053
-
A closed set of normal orthogonal functions
-
MR1506485
-
WALSH, J. L. (1923). A closed set of normal orthogonal functions. Amer. J. Math. 45 5-24. MR1506485
-
(1923)
Amer. J Math.
, vol.45
, pp. 5-24
-
-
Walsh, J.L.1
-
21
-
-
0036222370
-
The discrepancy and gain coefficients of scrambled digital nets
-
MR1895080
-
YUE, R.-X. and HICKERNELL, F. J. (2002). The discrepancy and gain coefficients of scrambled digital nets. J. Complexity 18 135-151. MR1895080
-
(2002)
J Complexity
, vol.18
, pp. 135-151
-
-
Yue, R.-X.1
Hickernell, F.J.2
|