메뉴 건너뛰기




Volumn 39, Issue 3, 2011, Pages 1372-1398

Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands

Author keywords

Digital nets; Quasi Monte Carlo; Randomized quasi Monte Carlo

Indexed keywords


EID: 79957984911     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS880     Document Type: Article
Times cited : (45)

References (21)
  • 1
    • 0002060375 scopus 로고
    • Approximate computation of multiple integrals. Vestnik Moskov. Univ., MR0115275
    • BAHVALOV, N. S. (1959). Approximate computation of multiple integrals. Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 3-18. MR0115275
    • (1959) Ser. Mat. Meh. Astr. Fiz Him. , vol.1959 , pp. 3-18
    • Bahvalov, N.S.1
  • 2
    • 84972541057 scopus 로고
    • A class of generalized Walsh functions
    • MR0068659
    • CHRESTENSON, H. E. (1955). A class of generalized Walsh functions. Pacific J. Math. 5 17-31. MR0068659
    • (1955) Pacific J Math. , vol.5 , pp. 17-31
    • Chrestenson, H.E.1
  • 3
    • 44649151911 scopus 로고    scopus 로고
    • Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions
    • (electronic). MR2346374
    • DICK, J. (2007). Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45 2141-2176 (electronic). MR2346374
    • (2007) SIAM J. Numer Anal. , vol.45 , pp. 2141-2176
    • Dick, J.1
  • 4
    • 55349128231 scopus 로고    scopus 로고
    • Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order
    • MR2391005
    • DICK, J. (2008). Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46 1519-1553. MR2391005
    • (2008) SIAM J. Numer Anal. , vol.46 , pp. 1519-1553
    • Dick, J.1
  • 5
    • 84904098688 scopus 로고    scopus 로고
    • On quasi-Monte Carlo rules achieving higher order convergence
    • (P. L'Ecuyer and A. Owen, eds.), Springer, Berlin
    • DICK, J. (2009). On quasi-Monte Carlo rules achieving higher order convergence. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L'Ecuyer and A. Owen, eds.) 73-96. Springer, Berlin.
    • (2009) Monte Carlo and Quasi-Monte Carlo Methods 2008 , pp. 73-96
    • Dick, J.1
  • 8
    • 0030259017 scopus 로고    scopus 로고
    • The mean square discrepancy of randomized nets
    • HICKERNELL, F. J. (1996). The mean square discrepancy of randomized nets. ACM Trans. Modeling Comput. Simul. 6 274-296.
    • (1996) ACM Trans. Modeling Comput Simul. , vol.6 , pp. 274-296
    • Hickernell, F.J.1
  • 10
    • 0000382131 scopus 로고    scopus 로고
    • On the L2-discrepancy for anchored boxes
    • MR1659004
    • MATOUŠEK, J. (1998). On the L2-discrepancy for anchored boxes. J. Complexity 14 527-556. MR1659004
    • (1998) J Complexity , vol.14 , pp. 527-556
    • Matoušek, J.1
  • 13
    • 0003211763 scopus 로고
    • Deterministic and stochastic error bounds in numerical analysis
    • Springer, Berlin. MR0971255
    • NOVAK, E. (1988). Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes in Math. 1349. Springer, Berlin. MR0971255
    • (1988) Lecture Notes in Math. , vol.1349
    • Novak, E.1
  • 15
    • 0013036522 scopus 로고    scopus 로고
    • Monte carlo variance of scrambled net quadrature
    • OWEN, A. B. (1997).Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34 1884-1910. MR1472202 (Pubitemid 127463576)
    • (1997) SIAM Journal on Numerical Analysis , vol.34 , Issue.5 , pp. 1884-1910
    • Owen, A.B.1
  • 16
    • 0031509503 scopus 로고    scopus 로고
    • Scrambled net variance for integrals of smooth functions
    • MR1463564
    • OWEN, A. B. (1997). Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 1541-1562. MR1463564
    • (1997) Ann Statist. , vol.25 , pp. 1541-1562
    • Owen, A.B.1
  • 17
    • 4243059534 scopus 로고    scopus 로고
    • Variance with alternative scramblings of digital nets
    • OWEN, A. B. (2003). Variance with alternative scramblings of digital nets. ACM Trans. Model. Comp. Simul. 13 363-378.
    • (2003) ACM Trans. Model. Comp Simul. , vol.13 , pp. 363-378
    • Owen, A.B.1
  • 18
    • 54349106163 scopus 로고    scopus 로고
    • Local antithetic sampling with scrambled nets
    • MR2458189
    • OWEN, A. B. (2008). Local antithetic sampling with scrambled nets. Ann. Statist. 36 2319-2343. MR2458189
    • (2008) Ann Statist. , vol.36 , pp. 2319-2343
    • Owen, A.B.1
  • 19
    • 0348233983 scopus 로고    scopus 로고
    • I-binomial scrambling of digital nets and sequences
    • DOI 10.1016/S0885-064X(03)00035-9
    • TEZUKA, S. and FAURE, H. (2003). I -binomial scrambling of digital nets and sequences. J. Complexity 19 744-757. MR2040428 (Pubitemid 38012036)
    • (2003) Journal of Complexity , vol.19 , Issue.6 , pp. 744-757
    • Tezuka, S.1    Faure, H.2
  • 20
    • 0001946053 scopus 로고
    • A closed set of normal orthogonal functions
    • MR1506485
    • WALSH, J. L. (1923). A closed set of normal orthogonal functions. Amer. J. Math. 45 5-24. MR1506485
    • (1923) Amer. J Math. , vol.45 , pp. 5-24
    • Walsh, J.L.1
  • 21
    • 0036222370 scopus 로고    scopus 로고
    • The discrepancy and gain coefficients of scrambled digital nets
    • MR1895080
    • YUE, R.-X. and HICKERNELL, F. J. (2002). The discrepancy and gain coefficients of scrambled digital nets. J. Complexity 18 135-151. MR1895080
    • (2002) J Complexity , vol.18 , pp. 135-151
    • Yue, R.-X.1    Hickernell, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.