메뉴 건너뛰기




Volumn 12, Issue 3, 2002, Pages 751-767

Model-based analysis to improve the performance of iterative simulations

Author keywords

Bayesian methods; Markov chain Monte Carlo; Maximum likelihood estimation; Multiple imputation; The CA DA algorithm; The DA algorithm; The EM algorithm; The Gibbs sampler; The PX EM algorithm

Indexed keywords


EID: 0036660835     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (34)
  • 1
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation (with discussion)
    • Besag, J. and Green, P.J. (1993). Spatial statistics and Bayesian computation (with discussion). J. Roy. Statist. Soc. Ser. B 55, 25-37.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 25-37
    • Besag, J.1    Green, P.J.2
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39, 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 5
    • 84964203940 scopus 로고
    • Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy (with discussion)
    • Efron, B. and R. Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy (with discussion). Statist. Sci. 1, 54-96.
    • (1986) Statist. Sci. , vol.1 , pp. 54-96
    • Efron, B.1    R Tibshirani, R.2
  • 6
    • 0032001902 scopus 로고    scopus 로고
    • Bayesian computations for a class of reliability growth models
    • Erkanli, A., Mazzuchi, T.A. and Soyer, R. (1998). Bayesian computations for a class of reliability growth models. Technometrics 40, 14-23.
    • (1998) Technometrics , vol.40 , pp. 14-23
    • Erkanli, A.1    Mazzuchi, T.A.2    Soyer, R.3
  • 7
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 9
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457-511.
    • (1992) Statist. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 3843097430 scopus 로고
    • Multigrid Monte Carlo methods: Conceptual foundations
    • Goodman J. and Sokal, A.D. (1988). Multigrid Monte Carlo methods: Conceptual foundations. Phys. Rev. D 40, 2035-2071.
    • (1988) Phys. Rev. D , vol.40 , pp. 2035-2071
    • Goodman, J.1    Sokal, A.D.2
  • 11
    • 21844489255 scopus 로고
    • Analysis of censored data from fractionated experiment: A Bayesian approach
    • Hamada, M. and Wu, C.F.J. (1995). Analysis of censored data from fractionated experiment: a Bayesian approach. J. Amer. Statist. Assoc. 90, 467-477.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 467-477
    • Hamada, M.1    Wu, C.F.J.2
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods Using Markov chains and their applications
    • Hastings, W.K. (1970). Monte Carlo sampling methods Using Markov chains and their applications. Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 0010974768 scopus 로고    scopus 로고
    • Covariance adjustment for Markov chain Monte Carlo sampling - A general framework and the covariance-adjusted data augmentation algorithm
    • Under revison
    • Liu, C. (2001). Covariance adjustment for Markov chain Monte Carlo sampling - a general framework and the covariance-adjusted data augmentation algorithm. Under revison for J. Amer. Statist. Assoc.
    • (2001) J. Amer. Statist. Assoc.
    • Liu, C.1
  • 14
    • 0000315742 scopus 로고
    • The ECME algorithm: An simple extension of EM and ECM with faster monotone convergence
    • Liu, C. and Rubin, D.B. (1994). The ECME algorithm: An simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633-48.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 15
    • 0002129118 scopus 로고    scopus 로고
    • Markov-normal analysis of iterative simulations before their convergence
    • Liu, C. and Rubin, D.B. (1996). Markov-normal analysis of iterative simulations before their convergence. J. Econometrics 75, 69-78.
    • (1996) J. Econometrics , vol.75 , pp. 69-78
    • Liu, C.1    Rubin, D.B.2
  • 16
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion for EM acceleration - The PX-EM algorithm
    • Liu, C., Rubin, D.B. and Wu, Y. (1998). Parameter expansion for EM acceleration - the PX-EM algorithm. Biometrika, 85, 755-770.
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.3
  • 17
    • 0034321325 scopus 로고    scopus 로고
    • Analysis of interval censored data from fractionated experiments using covariance adjustments
    • Liu, C. and Sun, D.X. (2000). Analysis of interval censored data from fractionated experiments using covariance adjustments. Technometrics 42, 353-365.
    • (2000) Technometrics , vol.42 , pp. 353-365
    • Liu, C.1    Sun, D.X.2
  • 18
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • Liu, J.S. (1994). The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J. Amer. Statist. Assoc. 89, 958-966.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 958-966
    • Liu, J.S.1
  • 19
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications
    • Liu, J.S., Wong, W.H. and Kong, A. (1994). Covariance structure of the Gibbs sampler with applications. Biometrika 81, 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 20
    • 0442309501 scopus 로고    scopus 로고
    • Parameter expansion scheme for data augmentation
    • Liu, J.S. and Wu, Y. (1999). Parameter expansion scheme for data augmentation. J. Amer. Statist. Assoc. 94, 1264-1274.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1264-1274
    • Liu, J.S.1    Wu, Y.2
  • 21
    • 0000761884 scopus 로고    scopus 로고
    • Seeking efficient data augmentation schemes via conditional and marginal augmentation
    • Meng, X.L. and van Dyk, D. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86, 301-320.
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.L.1    Van Dyk, D.2
  • 22
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-78.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 25
    • 0022690973 scopus 로고
    • Design optimization case studies
    • Phadke, M.S. (1986). Design optimization case studies. AT&T Tech. J. 65, 51-68.
    • (1986) AT&T Tech. J. , vol.65 , pp. 51-68
    • Phadke, M.S.1
  • 26
    • 0000051645 scopus 로고    scopus 로고
    • Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler
    • Roberts, G.O. and Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. J. Roy. Statist. Soc. Ser. B 59, 291-317.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 291-317
    • Roberts, G.O.1    Sahu, S.K.2
  • 27
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12, 1151-1172.
    • (1984) Ann. Statist. , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 28
    • 84950788916 scopus 로고
    • A noniterative sampling-importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm
    • Comment on "The calculation of posterior distributions by data augmentation" by M.A. Tanner and W.H. Wong
    • Rubin, D.B. (1987a). A noniterative sampling-importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Comment on "The calculation of posterior distributions by data augmentation" by M.A. Tanner and W.H. Wong. J. Amer. Statist. Assoc. 82, 543-546.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 30
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Swendsen, R.H. and Wang, J.S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86-88.
    • (1987) Phys. Rev. Lett. , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 31
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82, 528-550.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 32
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22, 1701-1762.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 33
    • 0011013248 scopus 로고
    • Major challenges for multiple-response (and multiple-adjustment) analysis
    • Edited by C.R. Rao, North-Holland, New York
    • Tukey, J.W. (1993). Major challenges for multiple-response (and multiple-adjustment) analysis. In Multivariate Analysis: Future Directions (Edited by C.R. Rao), 401-421. North-Holland, New York.
    • (1993) Multivariate Analysis: Future Directions , pp. 401-421
    • Tukey, J.W.1
  • 34
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • Wei, G.C.G. and Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. J. Amer. Statist. Assoc. 85, 699-704.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.