-
1
-
-
13144294059
-
Memory retention-the synaptic stability versus plasticity dilemma
-
Abraham, W. C., and Robins, A. 2005. Memory retention-the synaptic stability versus plasticity dilemma. Trends in Neurosciences 28(2):73-78.
-
(2005)
Trends in Neurosciences
, vol.28
, Issue.2
, pp. 73-78
-
-
Abraham, W.C.1
Robins, A.2
-
3
-
-
84885190141
-
Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting
-
Coop, R.; Mishtal, A.; and Arel, I. 2013. Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting. IEEE Trans. on Neural Networks and Learning Systems 24(10):1623-1634.
-
(2013)
IEEE Trans. on Neural Networks and Learning Systems
, vol.24
, Issue.10
, pp. 1623-1634
-
-
Coop, R.1
Mishtal, A.2
Arel, I.3
-
4
-
-
34547972773
-
Boosting for transfer learning
-
ACM
-
Dai, W.; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting for transfer learning. In ICML, 193-200. ACM.
-
(2007)
ICML
, pp. 193-200
-
-
Dai, W.1
Yang, Q.2
Xue, G.-R.3
Yu, Y.4
-
5
-
-
85031903027
-
-
Draelos, T. J.; Miner, N. E.; Lamb, C. C.; Vineyard, C. M.; Carlson, K. D.; James, C. D.; and Aimone, J. B. 2016. Neu-rogenesis deep learning. arXiv:1612.03770.
-
(2016)
Neu-Rogenesis Deep Learning
-
-
Draelos, T.J.1
Miner, N.E.2
Lamb, C.C.3
Vineyard, C.M.4
Carlson, K.D.5
James, C.D.6
Aimone, J.B.7
-
6
-
-
0000091024
-
A composite holographic associative recall model
-
Eich, J. M. 1982. A composite holographic associative recall model. Psych. Review 89(6):627.
-
(1982)
Psych. Review
, vol.89
, Issue.6
, pp. 627
-
-
Eich, J.M.1
-
7
-
-
85038214738
-
-
Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.; Rusu, A. A.; Pritzel, A.; and Wierstra, D. 2017. Path-net: Evolution channels gradient descent in super neural networks. arXiv:1701.08734.
-
(2017)
Path-Net: Evolution Channels Gradient Descent in Super Neural Networks
-
-
Fernando, C.1
Banarse, D.2
Blundell, C.3
Zwols, Y.4
Ha, D.5
Rusu, A.A.6
Pritzel, A.7
Wierstra, D.8
-
8
-
-
0347683832
-
Pseudo-recurrent connectionist networks: An approach to the 'sensitivity-stability' dilemma
-
French, R. M. 1997. Pseudo-recurrent connectionist networks: An approach to the 'sensitivity-stability' dilemma. Connection Science 9(4):353-380.
-
(1997)
Connection Science
, vol.9
, Issue.4
, pp. 353-380
-
-
French, R.M.1
-
9
-
-
0032923221
-
Catastrophic forgetting in connectionist networks
-
French, R. M. 1999. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 3(4):128-135.
-
(1999)
Trends in Cognitive Sciences
, vol.3
, Issue.4
, pp. 128-135
-
-
French, R.M.1
-
10
-
-
85023749902
-
Audio set: An ontology and human-labeled dataset for audio events
-
Gemmeke, J. F.; Ellis, D. P. W.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R. C.; Plakal, M.; and Ritter, M. 2017. Audio set: An ontology and human-labeled dataset for audio events. In ICASSP.
-
(2017)
ICASSP
-
-
Gemmeke, J.F.1
Ellis, D.P.W.2
Freedman, D.3
Jansen, A.4
Lawrence, W.5
Moore, R.C.6
Plakal, M.7
Ritter, M.8
-
11
-
-
84960130481
-
A bio-inspired incremental learning architecture for applied perceptual problems
-
Gepperth, A., and Karaoguz, C. 2016. A bio-inspired incremental learning architecture for applied perceptual problems. Cognitive Computation 8(5):924-934.
-
(2016)
Cognitive Computation
, vol.8
, Issue.5
, pp. 924-934
-
-
Gepperth, A.1
Karaoguz, C.2
-
12
-
-
84908477926
-
-
Goodfellow, I. J.; Mirza, M.; Xiao, D.; Courville, A.; and Bengio, Y. 2013. An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv:1312.6211.
-
(2013)
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
-
-
Goodfellow, I.J.1
Mirza, M.2
Xiao, D.3
Courville, A.4
Bengio, Y.5
-
13
-
-
84908474554
-
Unsupervised neuron selection for mitigating catastrophic forgetting in neural networks
-
2014, IEEE
-
Goodrich, B., and Arel, I. 2014. Unsupervised neuron selection for mitigating catastrophic forgetting in neural networks. In IEEE 57th Int. Midwest Symposium on Circuits and Systems (MWSCAS), 2014, 997-1000. IEEE.
-
(2014)
IEEE 57th Int. Midwest Symposium on Circuits and Systems (MWSCAS)
, pp. 997-1000
-
-
Goodrich, B.1
Arel, I.2
-
14
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In CVPR, 770-778.
-
(2016)
CVPR
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
15
-
-
85023741194
-
Cnn architectures for large-scale audio classification
-
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; et al. 2017. Cnn architectures for large-scale audio classification. In ICASSP.
-
(2017)
ICASSP
-
-
Hershey, S.1
Chaudhuri, S.2
Ellis, D.P.3
-
17
-
-
85020874517
-
Visual question answering: Datasets, algorithms, and future challenges
-
Kafle, K., and Kanan, C. 2017. Visual question answering: Datasets, algorithms, and future challenges. Computer Vision and Image Understanding.
-
(2017)
Computer Vision and Image Understanding
-
-
Kafle, K.1
Kanan, C.2
-
21
-
-
0026477904
-
Alcove: An exemplar-based connectionist model of category learning
-
Kruschke, J. K. 1992. Alcove: An exemplar-based connectionist model of category learning. Psych. review 99(1):22.
-
(1992)
Psych. Review
, vol.99
, Issue.1
, pp. 22
-
-
Kruschke, J.K.1
-
22
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolutional networks for semantic segmentation. In CVPR, 3431-3440.
-
(2015)
CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
23
-
-
77957064197
-
Catastrophic interference in connectionist networks: The sequential learning problem
-
McCloskey, M., and Cohen, N. J. 1989. Catastrophic interference in connectionist networks: The sequential learning problem. Psych. of Learning & Motivation 24:109-165.
-
(1989)
Psych. of Learning & Motivation
, vol.24
, pp. 109-165
-
-
McCloskey, M.1
Cohen, N.J.2
-
24
-
-
84904867557
-
Playing atari with deep reinforcement learning
-
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop.
-
(2013)
NIPS Deep Learning Workshop
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Graves, A.4
Antonoglou, I.5
Wierstra, D.6
Riedmiller, M.7
-
25
-
-
58149368051
-
A distributed memory model for serial-order information
-
Murdock, B. B. 1983. A distributed memory model for serial-order information. Psych. Review 90(4):316.
-
(1983)
Psych. Review
, vol.90
, Issue.4
, pp. 316
-
-
Murdock, B.B.1
-
27
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
Polikar, R.; Upda, L.; Upda, S. S.; and Honavar, V. 2001. Learn++: An incremental learning algorithm for supervised neural networks. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 31(4):497-508.
-
(2001)
IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
Upda, L.2
Upda, S.S.3
Honavar, V.4
-
28
-
-
85017151114
-
Life-long learning based on dynamic combination model
-
Ren, B.; Wang, H.; Li, J.; and Gao, H. 2017. Life-long learning based on dynamic combination model. Applied Soft Computing 56:398-404.
-
(2017)
Applied Soft Computing
, vol.56
, pp. 398-404
-
-
Ren, B.1
Wang, H.2
Li, J.3
Gao, H.4
-
29
-
-
38149038993
-
Catastrophic forgetting, rehearsal and pseudorehearsal
-
Robins, A. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science 7(2):123-146.
-
(1995)
Connection Science
, vol.7
, Issue.2
, pp. 123-146
-
-
Robins, A.1
-
30
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015. Imagenet large scale visual recognition challenge. IJCV 115(3):211-252.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
31
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet: A unified embedding for face recognition and clustering. In CVPR, 815-823.
-
(2015)
CVPR
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
32
-
-
84945763945
-
An analysis of catastrophic interference
-
Sharkey, N. E., and Sharkey, A. J. 1995. An analysis of catastrophic interference. Connection Science 7:301-329.
-
(1995)
Connection Science
, vol.7
, pp. 301-329
-
-
Sharkey, N.E.1
Sharkey, A.J.2
-
33
-
-
85037173591
-
-
Soltoggio, A.; Stanley, K. O.; and Risi, S. 2017. Born to learn: the inspiration, progress, and future of evolved plastic artificial neural networks. arXiv:1703.10371.
-
(2017)
Born to Learn: The Inspiration, Progress, and Future of Evolved Plastic Artificial Neural Networks
-
-
Soltoggio, A.1
Stanley, K.O.2
Risi, S.3
-
35
-
-
84878084353
-
The caltech-ucsd birds-200-2011 dataset
-
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie, S. 2011. The caltech-ucsd birds-200-2011 dataset. Tech Report: CNS-TR-2011-001.
-
(2011)
Tech Report: CNS-TR-2011-001
-
-
Wah, C.1
Branson, S.2
Welinder, P.3
Perona, P.4
Belongie, S.5
-
37
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Yu, L., and Liu, H. 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. In ICML, 856-863.
-
(2003)
ICML
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
|