메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages 1-38

Quasi-Monte Carlo feature maps for shift-invariant Kernels

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84989191960     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (92)

References (55)
  • 2
    • 84940217409 scopus 로고    scopus 로고
    • Sharp analysis of low-rank kernel matrix approximations
    • F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning Theory (COLT), 2013.
    • (2013) Conference on Learning Theory (COLT)
    • Bach, F.1
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 0001303543 scopus 로고
    • Monotone funktionen, Stieltjes integrale und harmonische analyse
    • S. Bochner. Monotone funktionen, Stieltjes integrale und harmonische analyse. Math. Ann., 108:378-410, 1933.
    • (1933) Math. Ann. , vol.108 , pp. 378-410
    • Bochner, S.1
  • 9
    • 85011514513 scopus 로고    scopus 로고
    • Monte Carlo and Quasi-Monte Carlo methods
    • 1
    • R. E. Caflisch. Monte Carlo and Quasi-Monte Carlo methods. Acta Numerica, 7:1-49, 1 1998.
    • (1998) Acta Numerica , vol.7 , pp. 1-49
    • Caflisch, R.E.1
  • 11
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:1-49, 2001.
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 13
    • 84875913709 scopus 로고    scopus 로고
    • High-dimensional integration: The Quasi-Monte Carlo way
    • J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The Quasi-Monte Carlo way. Acta Numerica, 22:133-288, 2013.
    • (2013) Acta Numerica , vol.22 , pp. 133-288
    • Dick, J.1    Kuo, F.Y.2    Sloan, I.H.3
  • 16
    • 84897565618 scopus 로고    scopus 로고
    • Revisiting the Nyström method for improved large-scale machine learning
    • International Conference on Machine Learning (ICML)
    • A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved large-scale machine learning. In International Conference on Machine Learning (ICML), 2013. To appear in the Journal of Machine Learning Research.
    • (2013) Journal of Machine Learning Research
    • Gittens, A.1    Mahoney, M.W.2
  • 18
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmooth convex programs
    • V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Springer-Verlag Limited
    • M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pages 95-110. Springer-Verlag Limited, 2008.
    • (2008) Lecture Notes in Control and Information Sciences , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 24
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res., 7:1493-1515, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 27
    • 78349279274 scopus 로고    scopus 로고
    • Random Fourier approximations for skewed multiplicative histogram kernels
    • F. Li, C. Ionescu, and C. Sminchisescu. Random Fourier approximations for skewed multiplicative histogram kernels. Pattern Recognition, 6376:262-271, 2010.
    • (2010) Pattern Recognition , vol.6376 , pp. 262-271
    • Li, F.1    Ionescu, C.2    Sminchisescu, C.3
  • 30
    • 84996045192 scopus 로고
    • A method for evaluation of the error function of real and complex variable with high relative accuracy
    • M. Mori. A method for evaluation of the error function of real and complex variable with high relative accuracy. Publ. RIMS, Kyoto Univ., 19:1081-1094, 1983.
    • (1983) Publ. RIMS, Kyoto Univ. , vol.19 , pp. 1081-1094
    • Mori, M.1
  • 37
    • 0001878701 scopus 로고
    • Positive definite functions on spheres
    • 03
    • I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96-108, 03 1942.
    • (1942) Duke Mathematical Journal , vol.9 , Issue.1 , pp. 96-108
    • Schoenberg, I.J.1
  • 39
    • 84973302487 scopus 로고    scopus 로고
    • High-performance kernel machines with implicit distributed optimization and randomization
    • JSM Proceedings, Tradeoffs in Big Data Modeling - Section on Statistical Computing
    • V. Sindhwani and H. Avron. High-performance kernel machines with implicit distributed optimization and randomization. In JSM Proceedings, Tradeoffs in Big Data Modeling - Section on Statistical Computing, 2014. To appear in Technometrics.
    • (2014) Technometrics
    • Sindhwani, V.1    Avron, H.2
  • 40
    • 0002522806 scopus 로고    scopus 로고
    • When are Quasi-Monte Carlo algorithms efficient for high dimensional integrals
    • I. H. Sloan and H. Wozniakowski. When are Quasi-Monte Carlo algorithms efficient for high dimensional integrals. Journal of Complexity, 14(1):1-33, 1998.
    • (1998) Journal of Complexity , vol.14 , Issue.1 , pp. 1-33
    • Sloan, I.H.1    Wozniakowski, H.2
  • 41
    • 38149136576 scopus 로고    scopus 로고
    • A Hilbert space embedding for distributions
    • Algorithmic Learning Theory, Springer Berlin Heidelberg
    • A. Smola, A. Gretton, L. Song, and B. Schlkopf. A Hilbert space embedding for distributions. In Algorithmic Learning Theory, volume 4754 of Lecture Notes in Computer Science, pages 13-31. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75224-0.
    • (2007) Lecture Notes in Computer Science , vol.4754 , pp. 13-31
    • Smola, A.1    Gretton, A.2    Song, L.3    Schlkopf, B.4
  • 46
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast svm training on very large data sets
    • December
    • I. W. Tsang, J. T. Kwok, and P. Cheung. Core vector machines: Fast svm training on very large data sets. J. Mach. Learn. Res., 6:363-392, December 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.3
  • 48
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
    • G. Wahba, editor. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1990.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 49
    • 0028516997 scopus 로고
    • Computation of the complex error function
    • 10
    • J. A. C. Weideman. Computation of the complex error function. SIAM Journal of Numerical Analysis, 31(5):1497-1518, 10 1994.
    • (1994) SIAM Journal of Numerical Analysis , vol.31 , Issue.5 , pp. 1497-1518
    • Weideman, J.A.C.1
  • 52
    • 84967790439 scopus 로고
    • Average case complexity of multivariate integration
    • H. Wozniakowski. Average case complexity of multivariate integration. Bull. Amer. Math. Soc., 24:185-194, 1991.
    • (1991) Bull. Amer. Math. Soc. , vol.24 , pp. 185-194
    • Wozniakowski, H.1
  • 54
    • 0000687222 scopus 로고
    • Applications of Reproducing Kernel Hilbert Spaces - Bandlimited signal models
    • K. Yao. Applications of Reproducing Kernel Hilbert Spaces - bandlimited signal models. Inform. Control, 11:429-444, 1967.
    • (1967) Inform. Control , vol.11 , pp. 429-444
    • Yao, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.