-
2
-
-
84940217409
-
Sharp analysis of low-rank kernel matrix approximations
-
F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning Theory (COLT), 2013.
-
(2013)
Conference on Learning Theory (COLT)
-
-
Bach, F.1
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
0001303543
-
Monotone funktionen, Stieltjes integrale und harmonische analyse
-
S. Bochner. Monotone funktionen, Stieltjes integrale und harmonische analyse. Math. Ann., 108:378-410, 1933.
-
(1933)
Math. Ann.
, vol.108
, pp. 378-410
-
-
Bochner, S.1
-
9
-
-
85011514513
-
Monte Carlo and Quasi-Monte Carlo methods
-
1
-
R. E. Caflisch. Monte Carlo and Quasi-Monte Carlo methods. Acta Numerica, 7:1-49, 1 1998.
-
(1998)
Acta Numerica
, vol.7
, pp. 1-49
-
-
Caflisch, R.E.1
-
11
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:1-49, 2001.
-
(2001)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
12
-
-
84937855981
-
Scalable kernel methods via doubly stochastic gradients
-
B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. Balcan, and L. Song. Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information Processing Systems (NIPS). 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
-
-
Dai, B.1
Xie, B.2
He, N.3
Liang, Y.4
Raj, A.5
Balcan, M.-F.6
Song, L.7
-
13
-
-
84875913709
-
High-dimensional integration: The Quasi-Monte Carlo way
-
J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The Quasi-Monte Carlo way. Acta Numerica, 22:133-288, 2013.
-
(2013)
Acta Numerica
, vol.22
, pp. 133-288
-
-
Dick, J.1
Kuo, F.Y.2
Sloan, I.H.3
-
16
-
-
84897565618
-
Revisiting the Nyström method for improved large-scale machine learning
-
International Conference on Machine Learning (ICML)
-
A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved large-scale machine learning. In International Conference on Machine Learning (ICML), 2013. To appear in the Journal of Machine Learning Research.
-
(2013)
Journal of Machine Learning Research
-
-
Gittens, A.1
Mahoney, M.W.2
-
18
-
-
36849072045
-
Graph implementations for nonsmooth convex programs
-
V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Springer-Verlag Limited
-
M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pages 95-110. Springer-Verlag Limited, 2008.
-
(2008)
Lecture Notes in Control and Information Sciences
, pp. 95-110
-
-
Grant, M.1
Boyd, S.2
-
20
-
-
85032752162
-
Kernel-based methods for hypothesis testing: A unified view
-
July
-
Z. Harchaoui, F. Bach, O. Cappe, and E. Moulines. Kernel-based methods for hypothesis testing: A unified view. IEEE Signal Processing Magazine, 30(4):87-97, July 2013.
-
(2013)
IEEE Signal Processing Magazine
, vol.30
, Issue.4
, pp. 87-97
-
-
Harchaoui, Z.1
Bach, F.2
Cappe, O.3
Moulines, E.4
-
21
-
-
84905226732
-
Kernel methods match Deep Neural Networks on TIMIT
-
P. Huang, H. Avron, T. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel methods match Deep Neural Networks on TIMIT. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.
-
(2014)
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
-
-
Huang, P.1
Avron, H.2
Sainath, T.3
Sindhwani, V.4
Ramabhadran, B.5
-
24
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res., 7:1493-1515, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
27
-
-
78349279274
-
Random Fourier approximations for skewed multiplicative histogram kernels
-
F. Li, C. Ionescu, and C. Sminchisescu. Random Fourier approximations for skewed multiplicative histogram kernels. Pattern Recognition, 6376:262-271, 2010.
-
(2010)
Pattern Recognition
, vol.6376
, pp. 262-271
-
-
Li, F.1
Ionescu, C.2
Sminchisescu, C.3
-
28
-
-
84954333999
-
-
ArXiv e-prints, November
-
Z. Lu, A. May, K. Liu, A. Bagheri Garakani, D. Guo, A. Bellet, L. Fan, M. Collins, B. Kingsbury, M. Picheny, and F. Sha. How to scale up kernel methods to be as good as deep neural net. ArXiv e-prints, November 2014.
-
(2014)
How to Scale Up Kernel Methods to be as Good as Deep Neural Net
-
-
Lu, Z.1
May, A.2
Liu, K.3
Bagheri Garakani, A.4
Guo, D.5
Bellet, A.6
Fan, L.7
Collins, M.8
Kingsbury, B.9
Picheny, M.10
Sha, F.11
-
30
-
-
84996045192
-
A method for evaluation of the error function of real and complex variable with high relative accuracy
-
M. Mori. A method for evaluation of the error function of real and complex variable with high relative accuracy. Publ. RIMS, Kyoto Univ., 19:1081-1094, 1983.
-
(1983)
Publ. RIMS, Kyoto Univ.
, vol.19
, pp. 1081-1094
-
-
Mori, M.1
-
37
-
-
0001878701
-
Positive definite functions on spheres
-
03
-
I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96-108, 03 1942.
-
(1942)
Duke Mathematical Journal
, vol.9
, Issue.1
, pp. 96-108
-
-
Schoenberg, I.J.1
-
39
-
-
84973302487
-
High-performance kernel machines with implicit distributed optimization and randomization
-
JSM Proceedings, Tradeoffs in Big Data Modeling - Section on Statistical Computing
-
V. Sindhwani and H. Avron. High-performance kernel machines with implicit distributed optimization and randomization. In JSM Proceedings, Tradeoffs in Big Data Modeling - Section on Statistical Computing, 2014. To appear in Technometrics.
-
(2014)
Technometrics
-
-
Sindhwani, V.1
Avron, H.2
-
40
-
-
0002522806
-
When are Quasi-Monte Carlo algorithms efficient for high dimensional integrals
-
I. H. Sloan and H. Wozniakowski. When are Quasi-Monte Carlo algorithms efficient for high dimensional integrals. Journal of Complexity, 14(1):1-33, 1998.
-
(1998)
Journal of Complexity
, vol.14
, Issue.1
, pp. 1-33
-
-
Sloan, I.H.1
Wozniakowski, H.2
-
41
-
-
38149136576
-
A Hilbert space embedding for distributions
-
Algorithmic Learning Theory, Springer Berlin Heidelberg
-
A. Smola, A. Gretton, L. Song, and B. Schlkopf. A Hilbert space embedding for distributions. In Algorithmic Learning Theory, volume 4754 of Lecture Notes in Computer Science, pages 13-31. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75224-0.
-
(2007)
Lecture Notes in Computer Science
, vol.4754
, pp. 13-31
-
-
Smola, A.1
Gretton, A.2
Song, L.3
Schlkopf, B.4
-
42
-
-
77956540831
-
Hilbert space embeddings of Hidden Markov Models
-
L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. Smola. Hilbert space embeddings of Hidden Markov Models. In International Conference in Machine Learning (ICML), 2010.
-
(2010)
International Conference in Machine Learning (ICML)
-
-
Song, L.1
Boots, B.2
Siddiqi, S.3
Gordon, G.4
Smola, A.5
-
44
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
B. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G. Lanckriet. Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res., 11:1517-1561, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1517-1561
-
-
Sriperumbudur, B.1
Gretton, A.2
Fukumizu, K.3
Scholkopf, B.4
Lanckriet, G.5
-
46
-
-
21844440579
-
Core vector machines: Fast svm training on very large data sets
-
December
-
I. W. Tsang, J. T. Kwok, and P. Cheung. Core vector machines: Fast svm training on very large data sets. J. Mach. Learn. Res., 6:363-392, December 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.3
-
48
-
-
0003466536
-
-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
-
G. Wahba, editor. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1990.
-
(1990)
Spline Models for Observational Data
-
-
Wahba, G.1
-
49
-
-
0028516997
-
Computation of the complex error function
-
10
-
J. A. C. Weideman. Computation of the complex error function. SIAM Journal of Numerical Analysis, 31(5):1497-1518, 10 1994.
-
(1994)
SIAM Journal of Numerical Analysis
, vol.31
, Issue.5
, pp. 1497-1518
-
-
Weideman, J.A.C.1
-
52
-
-
84967790439
-
Average case complexity of multivariate integration
-
H. Wozniakowski. Average case complexity of multivariate integration. Bull. Amer. Math. Soc., 24:185-194, 1991.
-
(1991)
Bull. Amer. Math. Soc.
, vol.24
, pp. 185-194
-
-
Wozniakowski, H.1
-
53
-
-
84911433398
-
Random Laplace feature maps for semigroup kernels on histograms
-
J. Yang, V. Sindhwani, Q. Fan, H. Avron, and M. Mahoney. Random Laplace feature maps for semigroup kernels on histograms. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Yang, J.1
Sindhwani, V.2
Fan, Q.3
Avron, H.4
Mahoney, M.5
-
54
-
-
0000687222
-
Applications of Reproducing Kernel Hilbert Spaces - Bandlimited signal models
-
K. Yao. Applications of Reproducing Kernel Hilbert Spaces - bandlimited signal models. Inform. Control, 11:429-444, 1967.
-
(1967)
Inform. Control
, vol.11
, pp. 429-444
-
-
Yao, K.1
|