메뉴 건너뛰기




Volumn 221, Issue , 2019, Pages 235-246

Conflation of expert and crowd reference data to validate global binary thematic maps

(33)  Waldner, François a,b   Schucknecht, Anne c,d   Lesiv, Myroslava e   Gallego, Javier c   See, Linda e   Pérez Hoyos, Ana c   d'Andrimont, Raphaël a,c   de Maet, Thomas a   Bayas, Juan Carlos Laso e   Fritz, Steffen e   Leo, Olivier c   Kerdiles, Hervé c   Díez, Mónica f   Van Tricht, Kristof g   Gilliams, Sven g   Shelestov, Andrii h   Lavreniuk, Mykola h   Simões, Margareth i,q   Ferraz, Rodrigo i   Bellón, Beatriz j   more..


Author keywords

Accuracy assessment; Crowdsourcing; Data quality; Photo interpretation; Stratified systematic sampling; Volunteered geographic information

Indexed keywords

CROWDSOURCING; MAPS; PHOTOINTERPRETATION; RELIABILITY;

EID: 85056826218     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2018.10.039     Document Type: Article
Times cited : (29)

References (78)
  • 1
    • 56149114234 scopus 로고    scopus 로고
    • GlobCover: the most detailed picture of earth
    • Arino, O., et al. GlobCover: the most detailed picture of earth. ESA Bulletin-European Space Agency, 2008, 136.
    • (2008) ESA Bulletin-European Space Agency , pp. 136
    • Arino, O.1
  • 2
    • 84875275132 scopus 로고    scopus 로고
    • Open-source mapping and Services for web-based land-cover validation
    • Bastin, L., Buchanan, G., Beresford, A., Pekel, J.F., Dubois, G., Open-source mapping and Services for web-based land-cover validation. Eco. Inform. 14 (2013), 9–16.
    • (2013) Eco. Inform. , vol.14 , pp. 9-16
    • Bastin, L.1    Buchanan, G.2    Beresford, A.3    Pekel, J.F.4    Dubois, G.5
  • 4
    • 85012229903 scopus 로고    scopus 로고
    • Collect earth: land use and land cover assessment through augmented visual interpretation
    • Bey, A., et al. Collect earth: land use and land cover assessment through augmented visual interpretation. Remote Sens., 8(10), 2016, 807.
    • (2016) Remote Sens. , vol.8 , Issue.10 , pp. 807
    • Bey, A.1
  • 5
    • 77950636511 scopus 로고    scopus 로고
    • GLOBCOVER Products Report Description and Products Description and Validation Report
    • ESA Globcover Project Led by MEDIAS FrancePOSTEL
    • Bicheron, P., et al. GLOBCOVER Products Report Description and Products Description and Validation Report. 33(0), 2008, ESA Globcover Project Led by MEDIAS FrancePOSTEL, 140–147.
    • (2008) , vol.330 , pp. 140-147
    • Bicheron, P.1
  • 6
    • 85033450649 scopus 로고    scopus 로고
    • An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications
    • Bogaert, P., Waldner, F., Defourny, P., An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications. Stoch. Env. Res. Risk A., 2016, 1–16.
    • (2016) Stoch. Env. Res. Risk A. , pp. 1-16
    • Bogaert, P.1    Waldner, F.2    Defourny, P.3
  • 8
    • 84963693668 scopus 로고    scopus 로고
    • Consistent global land cover maps for climate modelling communities: current achievements of the ESA' land cover CCI
    • Retrieved
    • Bontemps, S., et al. Consistent global land cover maps for climate modelling communities: current achievements of the ESA' land cover CCI. ESA Living Planet Symposium, 2013 Retrieved http://adsabs.harvard.edu/abs/2013ESASP.722E.62B.
    • (2013) ESA Living Planet Symposium
    • Bontemps, S.1
  • 9
    • 84988214289 scopus 로고    scopus 로고
    • Global land cover mapping at 30 m resolution: a pok-based operational approach
    • Retrieved
    • Chen, J., et al. Global land cover mapping at 30 m resolution: a pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 103 (2015), 7–27 Retrieved https://doi.org/10.1016/j.isprsjprs.2014.09.002.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.103 , pp. 7-27
    • Chen, J.1
  • 10
    • 85006172908 scopus 로고    scopus 로고
    • Towards a collaborative global land cover information service
    • Retrieved July 12, 2018
    • Chen, J., Li, S., Wu, H., Chen, X., Towards a collaborative global land cover information service. Int. J. Digital Earth 10:4 (2017), 356–370 Retrieved July 12, 2018 https://www.tandfonline.com/doi/full/10.1080/17538947.2016.1267268.
    • (2017) Int. J. Digital Earth , vol.10 , Issue.4 , pp. 356-370
    • Chen, J.1    Li, S.2    Wu, H.3    Chen, X.4
  • 11
    • 80051990605 scopus 로고    scopus 로고
    • Virtual interpretation of earth web-Interface tool (VIEW-IT) for collecting land-use/land-cover reference data
    • Clark, M.L., Aide, T.M., Virtual interpretation of earth web-Interface tool (VIEW-IT) for collecting land-use/land-cover reference data. Remote Sens. 3:3 (2011), 601–620.
    • (2011) Remote Sens. , vol.3 , Issue.3 , pp. 601-620
    • Clark, M.L.1    Aide, T.M.2
  • 12
    • 84880321994 scopus 로고    scopus 로고
    • Using control data to determine the reliability of volunteered geographic information about land cover
    • Comber, A., et al. Using control data to determine the reliability of volunteered geographic information about land cover. Int. J. Appl. Earth Obs. Geoinf. 23:1 (2013), 37–48.
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.23 , Issue.1 , pp. 37-48
    • Comber, A.1
  • 13
    • 85056270145 scopus 로고    scopus 로고
    • The picture pile tool for rapid image assessment: a demonstration using hurricane matthew
    • (Delft)
    • Danylo, O., et al. The picture pile tool for rapid image assessment: a demonstration using hurricane matthew. ISPRS Technical Commission IV Symposium, 2018 (Delft).
    • (2018) ISPRS Technical Commission IV Symposium
    • Danylo, O.1
  • 15
    • 84897029668 scopus 로고    scopus 로고
    • PROBA-V mission for global vegetation monitoring: standard products and image quality
    • Dierckx, W., et al. PROBA-V mission for global vegetation monitoring: standard products and image quality. Int. J. Remote Sens. 35:7 (2014), 2589–2614.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.7 , pp. 2589-2614
    • Dierckx, W.1
  • 17
    • 85056807234 scopus 로고    scopus 로고
    • Copernicus Land Service – Pan-European Component: High Resolution Layers
    • European Environment Agency, Copernicus Land Service – Pan-European Component: High Resolution Layers. 2015, 2.
    • (2015) , pp. 2
    • European Environment Agency1
  • 18
    • 85056888270 scopus 로고    scopus 로고
    • Global Strategy for Improving Agricultural & Rural Statistics
    • FAO, Global Strategy for Improving Agricultural & Rural Statistics. http://gsars.org/en/, 2017.
    • (2017)
    • FAO1
  • 20
    • 79953782022 scopus 로고    scopus 로고
    • Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions
    • Foody, G.M., Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions. Glob. Ecol. Biogeogr. 20:3 (2011), 498–508.
    • (2011) Glob. Ecol. Biogeogr. , vol.20 , Issue.3 , pp. 498-508
    • Foody, G.M.1
  • 21
    • 84879322724 scopus 로고    scopus 로고
    • Ground reference data error and the Mis-estimation of the area of land cover change as a function of its abundance
    • Foody, G.M., Ground reference data error and the Mis-estimation of the area of land cover change as a function of its abundance. Remote Sens. Lett. 4:8 (2013), 783–792.
    • (2013) Remote Sens. Lett. , vol.4 , Issue.8 , pp. 783-792
    • Foody, G.M.1
  • 22
    • 84888860604 scopus 로고    scopus 로고
    • Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project
    • Foody, G., et al. Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans. GIS 17:6 (2013), 847–860.
    • (2013) Trans. GIS , vol.17 , Issue.6 , pp. 847-860
    • Foody, G.1
  • 23
    • 85044545962 scopus 로고    scopus 로고
    • Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data
    • Retrieved July 6, 2018
    • Foody, G., et al. Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data. ISPRS Int. J. Geo-Inf., 7(3), 2018, 80 Retrieved July 6, 2018 http://www.mdpi.com/2220-9964/7/3/80.
    • (2018) ISPRS Int. J. Geo-Inf. , vol.7 , Issue.3 , pp. 80
    • Foody, G.1
  • 24
    • 70449402784 scopus 로고    scopus 로고
    • Geo-Wiki.Org: the use of crowdsourcing to improve global land cover
    • Retrieved August 12, 2014
    • Fritz, S., et al. Geo-Wiki.Org: the use of crowdsourcing to improve global land cover. Remote Sens. 1:3 (2009), 345–354 Retrieved August 12, 2014 http://www.mdpi.com/2072-4292/1/3/345/.
    • (2009) Remote Sens. , vol.1 , Issue.3 , pp. 345-354
    • Fritz, S.1
  • 25
    • 81355164155 scopus 로고    scopus 로고
    • Highlighting continued uncertainty in global land cover maps for the user community
    • Retrieved September 6, 2014
    • Fritz, S., et al. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett., 6(4), 2011, 044005 Retrieved September 6, 2014 http://stacks.iop.org/1748-9326/6/i=4/a=044005?key=crossref.e37ea06a1a56e58be6fbd1f907045b97.
    • (2011) Environ. Res. Lett. , vol.6 , Issue.4
    • Fritz, S.1
  • 26
    • 84873417208 scopus 로고    scopus 로고
    • Downgrading recent estimates of land available for biofuel production
    • Fritz, S., et al. Downgrading recent estimates of land available for biofuel production. Environ. Sci. Technol. 47:3 (2013), 1688–1694.
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.3 , pp. 1688-1694
    • Fritz, S.1
  • 27
    • 84927952208 scopus 로고    scopus 로고
    • Mapping global cropland and field size
    • Fritz, S., et al. Mapping global cropland and field size. Glob. Chang. Biol. 21:5 (2015), 1980–1992.
    • (2015) Glob. Chang. Biol. , vol.21 , Issue.5 , pp. 1980-1992
    • Fritz, S.1
  • 29
    • 84886172097 scopus 로고    scopus 로고
    • The european land use and cover area-frame statistical survey
    • Gallego, J., Delincé, J., The european land use and cover area-frame statistical survey. Agricultural Survey Methods, 2010, 149–168.
    • (2010) Agricultural Survey Methods , pp. 149-168
    • Gallego, J.1    Delincé, J.2
  • 31
    • 85056876796 scopus 로고    scopus 로고
    • The GOFC-GOLD reference data portal
    • Retrieved July 3, 2017
    • GOFC-GOLD LC Office, The GOFC-GOLD reference data portal. Retrieved July 3, 2017 http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php, 2015.
    • (2015)
    • GOFC-GOLD LC Office1
  • 32
    • 36749037169 scopus 로고    scopus 로고
    • Citizens as sensors: the world of volunteered geography
    • Goodchild, M.F., Citizens as sensors: the world of volunteered geography. GeoJournal 69:4 (2007), 211–221.
    • (2007) GeoJournal , vol.69 , Issue.4 , pp. 211-221
    • Goodchild, M.F.1
  • 33
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-M for South Asia, Afghanistan and Iran
    • NASA EOSDIS Land Processes DAAC
    • Gumma, M.K., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-M for South Asia, Afghanistan and Iran. 2017, NASA EOSDIS Land Processes DAAC.
    • (2017)
    • Gumma, M.K.1
  • 34
    • 84977635279 scopus 로고    scopus 로고
    • The wisdom of crowds
    • Howe, J., The wisdom of crowds. Wired Mag., 161(4), 2015, 697.
    • (2015) Wired Mag. , vol.161 , Issue.4 , pp. 697
    • Howe, J.1
  • 35
    • 34548622819 scopus 로고    scopus 로고
    • Validating land cover maps with degree confluence project information
    • Iwao, K., Nishida, K., Kinoshita, T., Yamagata, Y., Validating land cover maps with degree confluence project information. Geophys. Res. Lett., 33(23), 2006.
    • (2006) Geophys. Res. Lett. , vol.33 , Issue.23
    • Iwao, K.1    Nishida, K.2    Kinoshita, T.3    Yamagata, Y.4
  • 36
    • 85056897531 scopus 로고    scopus 로고
    • Guidelines for Field Data Collection
    • Retrieved
    • JECAM, Guidelines for Field Data Collection. Retrieved http://www.jecam.org/JECAM_Guidelines_for_Field_Data_Collection_v1_0.pdf, 2015.
    • (2015)
    • JECAM1
  • 37
    • 85010822261 scopus 로고    scopus 로고
    • Mapping per-pixel predicted accuracy of classified remote sensing images
    • Retrieved September 2, 2018
    • Khatami, R., Mountrakis, G., Stehman, S.V., Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sens. Environ. 191 (2017), 156–167 Retrieved September 2, 2018 https://www.sciencedirect.com/science/article/pii/S0034425717300378.
    • (2017) Remote Sens. Environ. , vol.191 , pp. 156-167
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 38
    • 85010644464 scopus 로고    scopus 로고
    • Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community
    • Retrieved July 4, 2017
    • Lamarche, C., et al. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community. Remote Sens., 9(1), 2017, 36 Retrieved July 4, 2017 http://www.mdpi.com/2072-4292/9/1/36.
    • (2017) Remote Sens. , vol.9 , Issue.1 , pp. 36
    • Lamarche, C.1
  • 39
    • 84995480674 scopus 로고    scopus 로고
    • Crowdsourcing in-situ data on land cover and land use using gamification and Mobile technology
    • Retrieved July 13, 2018
    • Laso Bayas, J.C., et al. Crowdsourcing in-situ data on land cover and land use using gamification and Mobile technology. Remote Sens., 8(11), 2016, 905 Retrieved July 13, 2018 http://www.mdpi.com/2072-4292/8/11/905.
    • (2016) Remote Sens. , vol.8 , Issue.11 , pp. 905
    • Laso Bayas, J.C.1
  • 40
    • 85030126419 scopus 로고    scopus 로고
    • A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform
    • Laso Bayas, J.C., et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data, 4, 2017.
    • (2017) Sci. Data , vol.4
    • Laso Bayas, J.C.1
  • 41
    • 80051866819 scopus 로고    scopus 로고
    • An assessment of the accuracy of volunteered road map production in Western Kenya
    • de Leeuw, J., et al. An assessment of the accuracy of volunteered road map production in Western Kenya. Remote Sens. 3:2 (2011), 247–256.
    • (2011) Remote Sens. , vol.3 , Issue.2 , pp. 247-256
    • de Leeuw, J.1
  • 42
    • 85056865924 scopus 로고    scopus 로고
    • Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data
    • Lesiv, M., et al. Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data. Land, 7.4, 2018, 118.
    • (2018) Land , vol.7.4 , pp. 118
    • Lesiv, M.1
  • 43
    • 0024521543 scopus 로고
    • A concordance correlation coefficient to evaluate reproducibility
    • Lin, Lawrence I-Kuei, A concordance correlation coefficient to evaluate reproducibility. Biometrics 45 (1989), 255–268.
    • (1989) Biometrics , vol.45 , pp. 255-268
    • Lin, L.I.-K.1
  • 44
    • 85042534502 scopus 로고    scopus 로고
    • Mapping cropland abandonment in the Aral Sea basin with MODIS time series
    • Löw, F., et al. Mapping cropland abandonment in the Aral Sea basin with MODIS time series. Remote Sens., 10(2), 2018.
    • (2018) Remote Sens. , vol.10 , Issue.2
    • Löw, F.1
  • 45
    • 85019928372 scopus 로고    scopus 로고
    • Optimal incentives for collective intelligence
    • Retrieved https://doi.org/10.1073/pnas.1618722114
    • Mann, R.P., Helbing, D., Optimal incentives for collective intelligence. PNAS 114:20 (2017), 5077–5082 Retrieved http://arxiv.org/abs/1611.03899%0A https://doi.org/10.1073/pnas.1618722114.
    • (2017) PNAS , vol.114 , Issue.20 , pp. 5077-5082
    • Mann, R.P.1    Helbing, D.2
  • 46
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30m for North America: Cropland Extent Product (GFSAD30NACE)
    • NASA EOSDIS Land Processes DAAC Retrieved February 14, 2018
    • Massey, R., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30m for North America: Cropland Extent Product (GFSAD30NACE). 2017, NASA EOSDIS Land Processes DAAC, 10.5067/MEaSUREs/GFSAD/GFSAD30NACE.001 Retrieved February 14, 2018.
    • (2017)
    • Massey, R.1
  • 47
    • 33746330734 scopus 로고    scopus 로고
    • Validation of the global land cover 2000 map
    • Mayaux, P., et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 44:7 (2006), 1728–1737.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.7 , pp. 1728-1737
    • Mayaux, P.1
  • 48
    • 33749244786 scopus 로고    scopus 로고
    • Cropland expansion changes deforestation dynamics in the Southern Brazilian amazon
    • Retrieved
    • Morton, D., et al. Cropland expansion changes deforestation dynamics in the Southern Brazilian amazon. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 2006, 14637–14641 Retrieved http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1600012&tool=pmcentrez&rendertype=abstract.
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.10339 , pp. 14637-14641
    • Morton, D.1
  • 49
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Southeast & Northeast Asia: Cropland Extent Product (GFSAD30SEACE)
    • NASA EOSDIS Land Processes DAAC
    • Oliphant, A.J., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Southeast & Northeast Asia: Cropland Extent Product (GFSAD30SEACE). 2017, NASA EOSDIS Land Processes DAAC.
    • (2017)
    • Oliphant, A.J.1
  • 50
    • 84859762856 scopus 로고    scopus 로고
    • A global land-cover validation data set, part I: fundamental design principles
    • Retrieved July 12, 2018
    • Olofsson, P., et al. A global land-cover validation data set, part I: fundamental design principles. Int. J. Remote Sens. 33:18 (2012), 5768–5788 Retrieved July 12, 2018 http://www.tandfonline.com/doi/abs/10.1080/01431161.2012.674230.
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.18 , pp. 5768-5788
    • Olofsson, P.1
  • 51
    • 84897951081 scopus 로고    scopus 로고
    • Good practices for estimating area and assessing accuracy of land change
    • Olofsson, P., et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148 (2014), 42–57.
    • (2014) Remote Sens. Environ. , vol.148 , pp. 42-57
    • Olofsson, P.1
  • 52
    • 85010648872 scopus 로고    scopus 로고
    • High-resolution mapping of global surface water and its long-term changes
    • Retrieved July 4, 2017
    • Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., High-resolution mapping of global surface water and its long-term changes. Nature 540:7633 (2016), 418–422 Retrieved July 4, 2017 http://www.nature.com/doifinder/10.1038/nature20584.
    • (2016) Nature , vol.540 , Issue.7633 , pp. 418-422
    • Pekel, J.F.1    Cottam, A.2    Gorelick, N.3    Belward, A.S.4
  • 53
    • 84884818243 scopus 로고    scopus 로고
    • A global human settlement layer from optical HR/VHR RS data: concept and first results
    • Retrieved July 4, 2017
    • Pesaresi, M., et al. A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6:5 (2013), 2102–2131 Retrieved July 4, 2017 http://ieeexplore.ieee.org/document/6578177/.
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.6 , Issue.5 , pp. 2102-2131
    • Pesaresi, M.1
  • 54
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Europe, Middle-East, Russia and Central Asia: Cropland Extent Product (GFSAD30EUCEARUMECE)
    • NASA EOSDIS Land Processes DAAC Retrieved February 14, 2018
    • Phalke, A., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Europe, Middle-East, Russia and Central Asia: Cropland Extent Product (GFSAD30EUCEARUMECE). 2017, NASA EOSDIS Land Processes DAAC, 10.5067/MEaSUREs/GFSAD/GFSAD30EUCEARUMECE.001 Retrieved February 14, 2018.
    • (2017)
    • Phalke, A.1
  • 55
    • 42249104378 scopus 로고    scopus 로고
    • Components of information for multiple resolution comparison between maps that share a real variable
    • Pontius, R., Thontteh, O., Chen, H., Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 15:2 (2008), 111–142.
    • (2008) Environ. Ecol. Stat. , vol.15 , Issue.2 , pp. 111-142
    • Pontius, R.1    Thontteh, O.2    Chen, H.3
  • 56
    • 10744232552 scopus 로고    scopus 로고
    • Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon
    • Powell, R.L., et al. Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens. Environ. 90:2 (2004), 221–234.
    • (2004) Remote Sens. Environ. , vol.90 , Issue.2 , pp. 221-234
    • Powell, R.L.1
  • 57
    • 85016162849 scopus 로고    scopus 로고
    • A solution to the single-question crowd wisdom problem
    • Prelec, D., Seung, H.S., McCoy, J., A solution to the single-question crowd wisdom problem. Nature 541:7638 (2017), 532–535.
    • (2017) Nature , vol.541 , Issue.7638 , pp. 532-535
    • Prelec, D.1    Seung, H.S.2    McCoy, J.3
  • 58
    • 84924565264 scopus 로고    scopus 로고
    • Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics
    • Schepaschenko, D., et al. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sens. Environ. 162 (2015), 208–220.
    • (2015) Remote Sens. Environ. , vol.162 , pp. 208-220
    • Schepaschenko, D.1
  • 59
    • 84881170121 scopus 로고    scopus 로고
    • Comparing the quality of crowdsourced data contributed by expert and non-experts
    • See, L., et al. Comparing the quality of crowdsourced data contributed by expert and non-experts. PLoS One, 8(7), 2013.
    • (2013) PLoS One , vol.8 , Issue.7
    • See, L.1
  • 61
    • 84941025608 scopus 로고    scopus 로고
    • Harnessing the power of volunteers, the internet and Google earth to collect and validate global spatial information using geo-wiki
    • See, L., et al. Harnessing the power of volunteers, the internet and Google earth to collect and validate global spatial information using geo-wiki. Technol. Forecast. Soc. Chang. 98 (2015), 324–335.
    • (2015) Technol. Forecast. Soc. Chang. , vol.98 , pp. 324-335
    • See, L.1
  • 62
    • 70249106481 scopus 로고    scopus 로고
    • Sampling designs for accuracy assessment of land cover
    • Stehman, S.V., Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 30:20 (2009), 5243–5272.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.20 , pp. 5243-5272
    • Stehman, S.V.1
  • 63
    • 84863523610 scopus 로고    scopus 로고
    • A global land-cover validation data set, II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class
    • Retrieved July 12, 2018
    • Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, Martin, Friedl, Mark A., A global land-cover validation data set, II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote Sens. 33:22 (2012), 6975–6993 Retrieved July 12, 2018 http://www.tandfonline.com/doi/abs/10.1080/01431161.2012.695092.
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.22 , pp. 6975-6993
    • Stehman, S.V.1    Olofsson, P.2    Woodcock, C.E.3    Herold, M.4    Friedl, M.A.5
  • 64
    • 85046169385 scopus 로고    scopus 로고
    • Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover
    • Retrieved July 6, 2018
    • Stehman, Stephen V., Fonte, Cidália C., Foody, Giles M., See, Linda, Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover. Remote Sens. Environ. 212 (2018), 47–59 Retrieved July 6, 2018 https://www.sciencedirect.com/science/article/pii/S0034425718301627.
    • (2018) Remote Sens. Environ. , vol.212 , pp. 47-59
    • Stehman, S.V.1    Fonte, C.C.2    Foody, G.M.3    See, L.4
  • 65
    • 33846645581 scopus 로고    scopus 로고
    • Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps
    • Strahler, A.H., et al. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps. 2006.
    • (2006)
    • Strahler, A.H.1
  • 66
    • 1342309593 scopus 로고    scopus 로고
    • The effect of field experience on the accuracy of identifying land cover types in aerial photographs
    • Strand, G.H., Dramstad, W., Engan, G., The effect of field experience on the accuracy of identifying land cover types in aerial photographs. Int. J. Appl. Earth Obs. Geoinf. 4:2 (2002), 137–146.
    • (2002) Int. J. Appl. Earth Obs. Geoinf. , vol.4 , Issue.2 , pp. 137-146
    • Strand, G.H.1    Dramstad, W.2    Engan, G.3
  • 67
    • 64049112021 scopus 로고    scopus 로고
    • Urbanization in India – spatiotemporal analysis using remote sensing data
    • Retrieved July 12, 2018
    • Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., Dech, S., Urbanization in India – spatiotemporal analysis using remote sensing data. Comput. Environ. Urban. Syst. 33:3 (2009), 179–188 Retrieved July 12, 2018 https://www.sciencedirect.com/science/article/pii/S0198971508000604#fig3.
    • (2009) Comput. Environ. Urban. Syst. , vol.33 , Issue.3 , pp. 179-188
    • Taubenböck, H.1    Wegmann, M.2    Roth, A.3    Mehl, H.4    Dech, S.5
  • 68
    • 85075220140 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Australia, New Zealand, China, and Mongolia: Cropland Extent Product (GFSAD30AUNZCNMOCE)
    • NASA EOSDIS Land Processes DAAC Retrieved February 14, 2018
    • Teluguntla, P., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Australia, New Zealand, China, and Mongolia: Cropland Extent Product (GFSAD30AUNZCNMOCE). 2017, NASA EOSDIS Land Processes DAAC, 10.5067/MEaSUREs/GFSAD/GFSAD30AUNZCNMOCE.001 Retrieved February 14, 2018.
    • (2017)
    • Teluguntla, P.1
  • 69
    • 84893008902 scopus 로고    scopus 로고
    • Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors
    • Van Coillie, F.M.B., et al. Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors. Int. J. Remote Sens. 35:2 (2014), 754–778.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.2 , pp. 754-778
    • Van Coillie, F.M.B.1
  • 70
    • 84873166271 scopus 로고    scopus 로고
    • Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale
    • Retrieved December 27, 2012
    • Vancutsem, C., Marinho, E., Kayitakire, F., See, L., Fritz, S., Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 5:1 (2012), 19–41 Retrieved December 27, 2012 http://www.mdpi.com/2072-4292/5/1/19/.
    • (2012) Remote Sens. , vol.5 , Issue.1 , pp. 19-41
    • Vancutsem, C.1    Marinho, E.2    Kayitakire, F.3    See, L.4    Fritz, S.5
  • 71
    • 84933557278 scopus 로고    scopus 로고
    • Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and National Cropland Maps
    • Waldner, F., Fritz, S., Di Gregorio, A., Defourny, P., Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and National Cropland Maps. Remote Sens. 7:6 (2015), 7959–7986.
    • (2015) Remote Sens. , vol.7 , Issue.6 , pp. 7959-7986
    • Waldner, F.1    Fritz, S.2    Di Gregorio, A.3    Defourny, P.4
  • 72
    • 84982913053 scopus 로고    scopus 로고
    • Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
    • Waldner, F., et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 37:14 (2016), 3196–3231.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.14 , pp. 3196-3231
    • Waldner, F.1
  • 73
    • 0000514485 scopus 로고
    • An investigation of some estimators of variance for systematic sampling
    • Wolter, K.M., An investigation of some estimators of variance for systematic sampling. J. Am. Stat. Assoc. 79:388 (1984), 781–790.
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.388 , pp. 781-790
    • Wolter, K.M.1
  • 74
    • 0034104353 scopus 로고    scopus 로고
    • Fuzzy set theory and thematic maps: accuracy assessment and area estimation
    • Woodcock, C.E., Gopal, S., Fuzzy set theory and thematic maps: accuracy assessment and area estimation. Int. J. Geogr. Inf. Sci. 14:2 (2000), 153–172.
    • (2000) Int. J. Geogr. Inf. Sci. , vol.14 , Issue.2 , pp. 153-172
    • Woodcock, C.E.1    Gopal, S.2
  • 75
    • 85046867280 scopus 로고    scopus 로고
    • Exploring geo-tagged photos for land cover validation with deep learning
    • Retrieved July 13, 2018
    • Xing, H., Meng, Y., Wang, Z., Fan, K., Hou, D., Exploring geo-tagged photos for land cover validation with deep learning. ISPRS J. Photogramm. Remote Sens. 141 (2018), 237–251 Retrieved July 13, 2018 https://www.sciencedirect.com/science/article/pii/S0924271618301333.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.141 , pp. 237-251
    • Xing, H.1    Meng, Y.2    Wang, Z.3    Fan, K.4    Hou, D.5
  • 76
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m Africa: Cropland Extent Product (GFSAD30AFCE)
    • NASA EOSDIS Land Processes DAAC Retrieved February 14, 2018
    • Xiong, J., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m Africa: Cropland Extent Product (GFSAD30AFCE). 2017, NASA EOSDIS Land Processes DAAC, 10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001 Retrieved February 14, 2018.
    • (2017)
    • Xiong, J.1
  • 77
    • 84888134923 scopus 로고    scopus 로고
    • FROM-GC: 30 m global cropland extent derived through multisource data integration
    • Retrieved September 13, 2018
    • Yu, L., et al. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digital Earth 6:6 (2013), 521–533 Retrieved September 13, 2018 http://www.tandfonline.com/doi/abs/10.1080/17538947.2013.822574.
    • (2013) Int. J. Digital Earth , vol.6 , Issue.6 , pp. 521-533
    • Yu, L.1
  • 78
    • 85051622098 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for South America: Cropland Extent Product (GFSAD30SACE)
    • NASA EOSDIS Land Processes DAAC Retrieved February 14, 2018
    • Zhong, Y., et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for South America: Cropland Extent Product (GFSAD30SACE). 2017, NASA EOSDIS Land Processes DAAC, 10.5067/MEaSUREs/GFSAD/GFSAD30SACE.001 Retrieved February 14, 2018.
    • (2017)
    • Zhong, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.