메뉴 건너뛰기




Volumn 37, Issue 14, 2016, Pages 3196-3231

Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

(14)  Waldner, François a   De Abelleyra, Diego b   Verón, Santiago R b,c   Zhang, Miao d   Wu, Bingfang d   Plotnikov, Dmitry e   Bartalev, Sergey e   Lavreniuk, Mykola f   Skakun, Sergii f,g   Kussul, Nataliia f   Le Maire, Guerric h,i   Dupuy, Stéphane j   Jarvis, Ian k   Defourny, Pierre a  

h CIRAD   (France)

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; CROPS; IMAGE RESOLUTION; INFRARED DEVICES; RADIOMETERS; SATELLITE IMAGERY;

EID: 84982913053     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1194545     Document Type: Article
Times cited : (88)

References (93)
  • 2
    • 0001021719 scopus 로고
    • A Look at the Remote Sensing Applications Program of the National Agricultural Statistics Service
    • J.D.Allen, 1990. “A Look at the Remote Sensing Applications Program of the National Agricultural Statistics Service.” Journal of Official Statistics 6 (4):393–409.
    • (1990) Journal of Official Statistics , vol.6 , Issue.4 , pp. 393-409
    • Allen, J.D.1
  • 3
    • 80052548720 scopus 로고    scopus 로고
    • Analyzing the Agricultural Transition in Mato Grosso, Brazil, Using Satellite-Derived Indices
    • D.Arvor, M.Meirelles, V.Dubreuil, A.Bégué, and Y.E.Shimabukuro. 2012. “Analyzing the Agricultural Transition in Mato Grosso, Brazil, Using Satellite-Derived Indices.” Applied Geography 32 (2):702–713. doi:10.1016/j.apgeog.2011.08.007.
    • (2012) Applied Geography , vol.32 , Issue.2 , pp. 702-713
    • Arvor, D.1    Meirelles, M.2    Dubreuil, V.3    Bégué, A.4    Shimabukuro, Y.E.5
  • 6
    • 84892924773 scopus 로고    scopus 로고
    • A New Locally-Adaptive Classification Method LAGMA for Large-Scale Land Cover Mapping Using Remote-Sensing Data
    • S.A.Bartalev, V.A.Egorov, E.A.Loupian, and S.A.Khvostikov. 2014. “A New Locally-Adaptive Classification Method LAGMA for Large-Scale Land Cover Mapping Using Remote-Sensing Data.” Remote Sensing Letters 5 (1):55–64. doi:10.1080/2150704X.2013.870675.
    • (2014) Remote Sensing Letters , vol.5 , Issue.1 , pp. 55-64
    • Bartalev, S.A.1    Egorov, V.A.2    Loupian, E.A.3    Khvostikov, S.A.4
  • 7
    • 84954445329 scopus 로고    scopus 로고
    • Mapping of Arable Land in Russia Using Multi-Year Time Series of MODIS Data and the LAGMA Classification Technique
    • S.A.Bartalev, D.E.Plotnikov, and E.A.Loupian. 2016. “Mapping of Arable Land in Russia Using Multi-Year Time Series of MODIS Data and the LAGMA Classification Technique.” Remote Sensing Letters 7 (3):269–278. doi:10.1080/2150704X.2015.1130874.
    • (2016) Remote Sensing Letters , vol.7 , Issue.3 , pp. 269-278
    • Bartalev, S.A.1    Plotnikov, D.E.2    Loupian, E.A.3
  • 8
    • 84857428807 scopus 로고
    • An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data
    • G.E.Battese, R.M.Harter, and W.A.Fuller. 1988. “An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical Association 83 (401):28–36. doi:10.1080/01621459.1988.10478561.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.401 , pp. 28-36
    • Battese, G.E.1    Harter, R.M.2    Fuller, W.A.3
  • 9
  • 11
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
    • C.Boryan, Z.Yang, R.Mueller, and M.Craig. 2011. “Monitoring US Agriculture:The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program.” Geocarto International 26 (5):341–358. doi:10.1080/10106049.2011.562309.
    • (2011) Geocarto International , vol.26 , Issue.5 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 12
    • 2942754291 scopus 로고    scopus 로고
    • Analysis of the Conflict Between Omission and Commission in Low Spatial Resolution Dichotomic Thematic Products: The Pareto Boundary
    • L.Boschetti, S.P.Flasse, and P.A.Brivio. 2004. “Analysis of the Conflict Between Omission and Commission in Low Spatial Resolution Dichotomic Thematic Products:The Pareto Boundary.” Remote Sensing of Environment 91 (3–4):280–292. doi:10.1016/j.rse.2004.02.015.
    • (2004) Remote Sensing of Environment , vol.91 , Issue.3-4 , pp. 280-292
    • Boschetti, L.1    Flasse, S.P.2    Brivio, P.A.3
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L.Breiman, 2001. “Random Forests.” Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 84900809847 scopus 로고    scopus 로고
    • Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products
    • M.L.Campagnolo, and E.L.Montano. 2014. “Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products.” IEEE Transactions onGeoscience and Remote Sensing 52 (9):5622–5632. doi:10.1109/TGRS.2013.2291496.
    • (2014) IEEE Transactions onGeoscience and Remote Sensing , vol.52 , Issue.9 , pp. 5622-5632
    • Campagnolo, M.L.1    Montano, E.L.2
  • 17
    • 84930017439 scopus 로고    scopus 로고
    • Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty
    • B.Chen, F.Qiu, B.Wu, and H.Du. 2015. “Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty.” Remote Sensing 7 (5):5980–6004. doi:10.3390/rs70505980.
    • (2015) Remote Sensing , vol.7 , Issue.5 , pp. 5980-6004
    • Chen, B.1    Qiu, F.2    Wu, B.3    Du, H.4
  • 18
    • 81755185783 scopus 로고    scopus 로고
    • Temporal Segmentation of MODIS Time Series for Improving Crop Classification in Central Asian Irrigation Systems
    • C.Conrad, R.R.Colditz, S.Dech, D.Klein, and P.L.G.Vlek. 2011. “Temporal Segmentation of MODIS Time Series for Improving Crop Classification in Central Asian Irrigation Systems.” International Journal of Remote Sensing 32 (23):8763–8778. doi:10.1080/01431161.2010.550647.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.23 , pp. 8763-8778
    • Conrad, C.1    Colditz, R.R.2    Dech, S.3    Klein, D.4    Vlek, P.L.G.5
  • 19
    • 84896005616 scopus 로고    scopus 로고
    • Derivation of Temporal Windows for Accurate Crop Discrimination in Heterogeneous Croplands of Uzbekistan Using Multitemporal Rapideye Images
    • C.Conrad, S.Dech, O.Dubovyk, S.Fritsch, D.Klein, F.Löw, G.Schorcht, and J.Zeidler. 2014. “Derivation of Temporal Windows for Accurate Crop Discrimination in Heterogeneous Croplands of Uzbekistan Using Multitemporal Rapideye Images.” Computers and Electronics in Agriculture 103:63–74. doi:10.1016/j.compag.2014.02.003.
    • (2014) Computers and Electronics in Agriculture , vol.103 , pp. 63-74
    • Conrad, C.1    Dech, S.2    Dubovyk, O.3    Fritsch, S.4    Klein, D.5    Löw, F.6    Schorcht, G.7    Zeidler, J.8
  • 20
    • 84860390491 scopus 로고    scopus 로고
    • Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data
    • C.Conrad, S.Fritsch, J.Zeidler, G.Rücker, and S.Dech. 2010. “Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data.” Remote Sensing 2 (4):1035–1056. doi:10.3390/rs2041035.
    • (2010) Remote Sensing , vol.2 , Issue.4 , pp. 1035-1056
    • Conrad, C.1    Fritsch, S.2    Zeidler, J.3    Rücker, G.4    Dech, S.5
  • 21
    • 0023523295 scopus 로고
    • The Interactive Effect of Spatial Resolution and Degree of Internal Variability within Land-Cover Types on Classification Accuracies
    • J.L.Cushnie, 1987. “The Interactive Effect of Spatial Resolution and Degree of Internal Variability within Land-Cover Types on Classification Accuracies.” International Journal of Remote Sensing 8 (1):15–29. doi:10.1080/01431168708948612.
    • (1987) International Journal of Remote Sensing , vol.8 , Issue.1 , pp. 15-29
    • Cushnie, J.L.1
  • 26
    • 77956179220 scopus 로고    scopus 로고
    • A Conceptual Framework to Define the Spatial Resolution Requirements for Agricultural Monitoring Using Remote Sensing
    • G.Duveiller, and P.Defourny. 2010. “A Conceptual Framework to Define the Spatial Resolution Requirements for Agricultural Monitoring Using Remote Sensing.” Remote Sensing of Environment 114 (11):2637–2650. doi:10.1016/j.rse.2010.06.001.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.11 , pp. 2637-2650
    • Duveiller, G.1    Defourny, P.2
  • 27
    • 84931271950 scopus 로고    scopus 로고
    • Exploiting the Multi-Angularity of the MODIS Temporal Signal to Identify Spatially Homogeneous Vegetation Cover: A Demonstration for Agricultural Monitoring Applications
    • G.Duveiller, R.Lopez-Lozano, and A.Cescatti. 2015. “Exploiting the Multi-Angularity of the MODIS Temporal Signal to Identify Spatially Homogeneous Vegetation Cover:A Demonstration for Agricultural Monitoring Applications.” Remote Sensing of Environment 166:61–77. doi:10.1016/j.rse.2015.06.001.
    • (2015) Remote Sensing of Environment , vol.166 , pp. 61-77
    • Duveiller, G.1    Lopez-Lozano, R.2    Cescatti, A.3
  • 29
    • 84865820031 scopus 로고    scopus 로고
    • Crop Type Mapping Using Spectral–Temporal Profiles and Phenological Information
    • S.Foerster, K.Kaden, M.Foerster, and S.Itzerott. 2012. “Crop Type Mapping Using Spectral–Temporal Profiles and Phenological Information.” Computers and Electronics in Agriculture 89:30–40. doi:10.1016/j.compag.2012.07.015.
    • (2012) Computers and Electronics in Agriculture , vol.89 , pp. 30-40
    • Foerster, S.1    Kaden, K.2    Foerster, M.3    Itzerott, S.4
  • 31
    • 42949083191 scopus 로고    scopus 로고
    • Identifying and Quantifying Uncertainty and Spatial Disagreement in the Comparison of Global Land Cover for Different Applications
    • S.Fritz, and L.See. 2008. “Identifying and Quantifying Uncertainty and Spatial Disagreement in the Comparison of Global Land Cover for Different Applications.” Global Change Biology 14 (5):1057–1075. doi:10.1111/j.1365-2486.2007.01519.x.
    • (2008) Global Change Biology , vol.14 , Issue.5 , pp. 1057-1075
    • Fritz, S.1    See, L.2
  • 33
    • 77952339583 scopus 로고    scopus 로고
    • Comparison of Global and Regional Land Cover Maps with Statistical Information for the Agricultural Domain in Africa
    • S.Fritz, L.See, and F.Rembold. 2010. “Comparison of Global and Regional Land Cover Maps with Statistical Information for the Agricultural Domain in Africa.” International Journal of Remote Sensing 31 (9):2237–2256. doi:10.1080/01431160902946598.
    • (2010) International Journal of Remote Sensing , vol.31 , Issue.9 , pp. 2237-2256
    • Fritz, S.1    See, L.2    Rembold, F.3
  • 36
    • 0029667619 scopus 로고    scopus 로고
    • Optimistic Bias in Classification Accuracy Assessment
    • T.O.Hammond, and D.L.Verbyla. 1996. “Optimistic Bias in Classification Accuracy Assessment.” International Journal of Remote Sensing 17 (6):1261–1266. doi:10.1080/01431169608949085.
    • (1996) International Journal of Remote Sensing , vol.17 , Issue.6 , pp. 1261-1266
    • Hammond, T.O.1    Verbyla, D.L.2
  • 37
    • 84983010761 scopus 로고    scopus 로고
    • F.Hannerz, and A.Lotsch. 2006. Assessment of Land Use and Cropland Inventories for Africa. CEEPA Discussion Papers 22. Pretoria:Centre of Environmental Economics and Policy in Africa, University of Pretoria.
    • (2006)
    • Hannerz, F.1    Lotsch, A.2
  • 39
    • 5144233854 scopus 로고    scopus 로고
    • TIMESAT–A Program for Analyzing Time-Series of Satellite Sensor Data
    • P.Jönsson, and L.Eklundh. 2004. “TIMESAT–A Program for Analyzing Time-Series of Satellite Sensor Data.” Computers & Geosciences 30 (8):833–845. doi:10.1016/j.cageo.2004.05.006.
    • (2004) Computers & Geosciences , vol.30 , Issue.8 , pp. 833-845
    • Jönsson, P.1    Eklundh, L.2
  • 44
    • 84962508988 scopus 로고    scopus 로고
    • Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m
    • M.-J.Lambert, F.Waldner, and P.Defourny. 2016. “Cropland Mapping over Sahelian and Sudanian Agrosystems:A Knowledge-Based Approach Using PROBA-V Time Series at 100-m.” Remote Sensing 8 (3):232. doi:10.3390/rs8030232.
    • (2016) Remote Sensing , vol.8 , Issue.3 , pp. 232
    • Lambert, M.-J.1    Waldner, F.2    Defourny, P.3
  • 46
    • 84930948525 scopus 로고    scopus 로고
    • Improved Capabilities of the Chinese High-Resolution Remote Sensing Satellite GF-1 for Monitoring Suspended Particulate Matter (SPM) in Inland Waters: Radiometric and Spatial Considerations
    • J.Li, X.Chen, L.Tian, J.Huang, and L.Feng. 2015. “Improved Capabilities of the Chinese High-Resolution Remote Sensing Satellite GF-1 for Monitoring Suspended Particulate Matter (SPM) in Inland Waters:Radiometric and Spatial Considerations.” ISPRS Journal of Photogrammetry and Remote Sensing 106:145–156. doi:10.1016/j.isprsjprs.2015.05.009.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.106 , pp. 145-156
    • Li, J.1    Chen, X.2    Tian, L.3    Huang, J.4    Feng, L.5
  • 47
    • 84884514639 scopus 로고    scopus 로고
    • Impact of Feature Selection on the Accuracy and Spatial Uncertainty of Per-Field Crop Classification Using Support Vector Machines
    • F.Löw, U.Michel, S.Dech, and C.Conrad. 2013. “Impact of Feature Selection on the Accuracy and Spatial Uncertainty of Per-Field Crop Classification Using Support Vector Machines.” ISPRS Journal of Photogrammetry and Remote Sensing 85:102–119. doi:10.1016/j.isprsjprs.2013.08.007.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 48
    • 84907466218 scopus 로고    scopus 로고
    • Defining the Spatial Resolution Requirements for Crop Identification Using Optical Remote Sensing
    • F.Löw, and G.Duveiller. 2014. “Defining the Spatial Resolution Requirements for Crop Identification Using Optical Remote Sensing.” Remote Sensing 6 (9):9034–9063. doi:10.3390/rs6099034.
    • (2014) Remote Sensing , vol.6 , Issue.9 , pp. 9034-9063
    • Löw, F.1    Duveiller, G.2
  • 49
    • 84927598104 scopus 로고    scopus 로고
    • Analysis of Uncertainty in Multi-Temporal Object-Based Classification
    • F.Löw, P.Knöfel, and C.Conrad. 2015. “Analysis of Uncertainty in Multi-Temporal Object-Based Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 105:91–106. doi:10.1016/j.isprsjprs.2015.03.004.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.105 , pp. 91-106
    • Löw, F.1    Knöfel, P.2    Conrad, C.3
  • 50
    • 84857024726 scopus 로고    scopus 로고
    • Comparing Ten Classification Methods for Burned Area Mapping in a Mediterranean Environment Using Landsat TM Satellite Data
    • G.Mallinis, and N.Koutsias. 2012. “Comparing Ten Classification Methods for Burned Area Mapping in a Mediterranean Environment Using Landsat TM Satellite Data.” International Journal of Remote Sensing 33 (14):4408–4433. doi:10.1080/01431161.2011.648284.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.14 , pp. 4408-4433
    • Mallinis, G.1    Koutsias, N.2
  • 51
    • 84945907812 scopus 로고    scopus 로고
    • An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
    • N.Matton, G.S.Canto, F.Waldner, S.Valero, D.Morin, J.Inglada, M.Arias, S.Bontemps, B.Koetz, and P.Defourny. 2015. “An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series.” Remote Sensing 7 (10):13208–13232. doi:10.3390/rs71013208.
    • (2015) Remote Sensing , vol.7 , Issue.10 , pp. 13208-13232
    • Matton, N.1    Canto, G.S.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 52
    • 0000596361 scopus 로고
    • Note on the Sampling Error of the Difference between Correlated Proportions or Percentages
    • Q.McNemar, 1947. “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages.” Psychometrika 12 (2):153–157. doi:10.1007/BF02295996.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 54
    • 84879479253 scopus 로고    scopus 로고
    • Generation of High Spatial and Temporal Resolution NDVI and Its Application in Crop Biomass Estimation
    • J.Meng, X.Du, and B.Wu. 2013. “Generation of High Spatial and Temporal Resolution NDVI and Its Application in Crop Biomass Estimation.” International Journal of Digital Earth 6 (3):203–218. doi:10.1080/17538947.2011.623189.
    • (2013) International Journal of Digital Earth , vol.6 , Issue.3 , pp. 203-218
    • Meng, J.1    Du, X.2    Wu, B.3
  • 56
    • 84937918615 scopus 로고    scopus 로고
    • On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
    • K.Millard, and M.Richardson. 2015. “On the Importance of Training Data Sample Selection in Random Forest Image Classification:A Case Study in Peatland Ecosystem Mapping.” Remote Sensing 7 (7):8489–8515. doi:10.3390/rs70708489.
    • (2015) Remote Sensing , vol.7 , Issue.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 57
    • 84922238304 scopus 로고    scopus 로고
    • Mining Dense Landsat Time Series for Separating Cropland and Pasture in a Heterogeneous Brazilian Savanna Landscape
    • H.Müller, P.Rufin, P.Griffiths, A.J.Siqueira, and P.Hostert. 2015. “Mining Dense Landsat Time Series for Separating Cropland and Pasture in a Heterogeneous Brazilian Savanna Landscape.” Remote Sensing of Environment 156:490–499. doi:10.1016/j.rse.2014.10.014.
    • (2015) Remote Sensing of Environment , vol.156 , pp. 490-499
    • Müller, H.1    Rufin, P.2    Griffiths, P.3    Siqueira, A.J.4    Hostert, P.5
  • 58
    • 0035837316 scopus 로고    scopus 로고
    • Crop Discrimination with Multitemporal SPOT/HRV Data in the Saga Plains, Japan
    • T.Murakami, S.Ogawa, N.Ishitsuka, K.Kumagai, and G.Saito. 2001. “Crop Discrimination with Multitemporal SPOT/HRV Data in the Saga Plains, Japan.” International Journal of Remote Sensing 22 (7):1335–1348. doi:10.1080/01431160151144378.
    • (2001) International Journal of Remote Sensing , vol.22 , Issue.7 , pp. 1335-1348
    • Murakami, T.1    Ogawa, S.2    Ishitsuka, N.3    Kumagai, K.4    Saito, G.5
  • 60
    • 33745891242 scopus 로고    scopus 로고
    • Resolution Dependent Errors in Remote Sensing of Cultivated Areas
    • M.Ozdogan, and C.E.Woodcock. 2006. “Resolution Dependent Errors in Remote Sensing of Cultivated Areas.” Remote Sensing of Environment 103 (2):203–217. doi:10.1016/j.rse.2006.04.004.
    • (2006) Remote Sensing of Environment , vol.103 , Issue.2 , pp. 203-217
    • Ozdogan, M.1    Woodcock, C.E.2
  • 61
    • 84869508813 scopus 로고    scopus 로고
    • Mapping Cropland Distributions Using a Hard and Soft Classification Model
    • Y.Pan, T.Hu, X.Zhu, J.Zhang, and X.Wang. 2012. “Mapping Cropland Distributions Using a Hard and Soft Classification Model.” IEEE Transactions on Geoscience and Remote Sensing 50 (11):4301–4312. doi:10.1109/TGRS.2012.2193403.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.11 , pp. 4301-4312
    • Pan, Y.1    Hu, T.2    Zhu, X.3    Zhang, J.4    Wang, X.5
  • 62
    • 79953182966 scopus 로고    scopus 로고
    • Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology
    • J.M.Peña-Barragán, M.K.Ngugi, R.E.Plant, and J.Six. 2011. “Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology.” Remote Sensing of Environment 115 (6):1301–1316. doi:10.1016/j.rse.2011.01.009.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.6 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 64
  • 65
    • 84945972046 scopus 로고    scopus 로고
    • The Recognition Features to Map Arable Lands Based on Multi-Annual MODIS Earth Observation Data [In Russian]
    • D.Plotnikov, S.A.Bartalev, and V.A.Egorov. 2010. “The Recognition Features to Map Arable Lands Based on Multi-Annual MODIS Earth Observation Data [In Russian].” Contemporary Remote Sensing from Space 7:330–341.
    • (2010) Contemporary Remote Sensing from Space , vol.7 , pp. 330-341
    • Plotnikov, D.1    Bartalev, S.A.2    Egorov, V.A.3
  • 66
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • R.G.Pontius, and M.Millones. 2011. “Death to Kappa:Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32 (15):4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.15 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 67
    • 0042553279 scopus 로고
    • Smoothing and Differentiation of Data by Simplified Least Squares Procedures
    • A.Savitzky, and M.J.E.Golay. 1964. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures.” Analytical Chemistry 36 (8):1627–1639. doi:10.1021/ac60214a047.
    • (1964) Analytical Chemistry , vol.36 , Issue.8 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 68
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points
    • Y.Shao, and R.S.Lunetta. 2012. “Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points.” ISPRS Journal of Photogrammetry and Remote Sensing 70:78–87. doi:10.1016/j.isprsjprs.2012.04.001.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 70
    • 84863027773 scopus 로고    scopus 로고
    • Cropland Extraction from Very High Spatial Resolution Satellite Imagery by Object-Based Classification Using Improved Mean Shift and One-Class Support Vector Machines
    • J.Shen, J.Liu, X.Lin, R.Zhao, and S.Xu. 2011. “Cropland Extraction from Very High Spatial Resolution Satellite Imagery by Object-Based Classification Using Improved Mean Shift and One-Class Support Vector Machines.” Sensor Letters 9 (3):997–1005. doi:10.1166/sl.2011.1361.
    • (2011) Sensor Letters , vol.9 , Issue.3 , pp. 997-1005
    • Shen, J.1    Liu, J.2    Lin, X.3    Zhao, R.4    Xu, S.5
  • 72
    • 84920511605 scopus 로고    scopus 로고
    • Reconstruction of Missing Data in Time-Series of Optical Satellite Images Using Self-Organizing Kohonen Maps
    • S.V.Skakun, and R.M.Basarab. 2014. “Reconstruction of Missing Data in Time-Series of Optical Satellite Images Using Self-Organizing Kohonen Maps.” Journal of Automation and Information Sciences 46:19–26. doi:10.1615/JAutomatInfScien.v46.i12.
    • (2014) Journal of Automation and Information Sciences , vol.46 , pp. 19-26
    • Skakun, S.V.1    Basarab, R.M.2
  • 73
    • 52649178927 scopus 로고    scopus 로고
    • Crop Area Estimate from Original and Simulated Spatial Resolution Data and Landscape Metrics
    • Soares, D. de M., L. S. Galvão, and A. R. Formaggio. 2008. “Crop Area Estimate from Original and Simulated Spatial Resolution Data and Landscape Metrics.” Scientia Agricola 65 (5):459–467. doi:10.1590/S0103-90162008000500003.
    • (2008) Scientia Agricola , vol.65 , Issue.5 , pp. 459-467
  • 74
    • 84856875529 scopus 로고    scopus 로고
    • An Edge-Oriented Approach to Thematic Map Error Assessment
    • S.P.Sweeney, and T.P.Evans. 2012. “An Edge-Oriented Approach to Thematic Map Error Assessment.” Geocarto International 27 (1):31–56. doi:10.1080/10106049.2011.622052.
    • (2012) Geocarto International , vol.27 , Issue.1 , pp. 31-56
    • Sweeney, S.P.1    Evans, T.P.2
  • 75
    • 33750401870 scopus 로고    scopus 로고
    • The Impact of Gridding Artifacts on the Local Spatial Properties of MODIS Data: Implications for Validation, Compositing, and Band-To-Band Registration across Resolutions
    • B.Tan, C.E.Woodcock, J.Hu, P.Zhang, M.Ozdogan, D.Huang, W.Yang, Y.Knyazikhin, and R.B.Myneni. 2006. “The Impact of Gridding Artifacts on the Local Spatial Properties of MODIS Data:Implications for Validation, Compositing, and Band-To-Band Registration across Resolutions.” Remote Sensing of Environment 105 (2):98–114. doi:10.1016/j.rse.2006.06.008.
    • (2006) Remote Sensing of Environment , vol.105 , Issue.2 , pp. 98-114
    • Tan, B.1    Woodcock, C.E.2    Hu, J.3    Zhang, P.4    Ozdogan, M.5    Huang, D.6    Yang, W.7    Knyazikhin, Y.8    Myneni, R.B.9
  • 76
    • 84869238704 scopus 로고    scopus 로고
    • An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data
    • P.S.Thenkabail, and Z.Wu. 2012. “An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data.” Remote Sensing 4 (12):2890–2918. doi:10.3390/rs4102890.
    • (2012) Remote Sensing , vol.4 , Issue.12 , pp. 2890-2918
    • Thenkabail, P.S.1    Wu, Z.2
  • 77
    • 0032183198 scopus 로고    scopus 로고
    • Derivative Analysis of Hyperspectral Data
    • F.Tsai, and W.Philpot. 1998. “Derivative Analysis of Hyperspectral Data.” Remote Sensing of Environment 66 (1):41–51. doi:10.1016/S0034-4257(98)00032-7.
    • (1998) Remote Sensing of Environment , vol.66 , Issue.1 , pp. 41-51
    • Tsai, F.1    Philpot, W.2
  • 78
    • 9244238755 scopus 로고    scopus 로고
    • Determining Temporal Windows for Crop Discrimination with Remote Sensing: A Case Study in South-Eastern Australia
    • T.G.Van Niel, and T.R.McVicar. 2004. “Determining Temporal Windows for Crop Discrimination with Remote Sensing:A Case Study in South-Eastern Australia.” Computers and Electronics in Agriculture 45 (1–3):91–108. doi:10.1016/j.compag.2004.06.003.
    • (2004) Computers and Electronics in Agriculture , vol.45 , Issue.1-3 , pp. 91-108
    • Van Niel, T.G.1    McVicar, T.R.2
  • 79
    • 41449100455 scopus 로고    scopus 로고
    • Mean Compositing, an Alternative Strategy for Producing Temporal Syntheses. Concepts and Performance Assessment for SPOT VEGETATION Time Series
    • C.Vancutsem, J.-F.Pekel, P.Bogaert, and P.Defourny. 2007. “Mean Compositing, an Alternative Strategy for Producing Temporal Syntheses. Concepts and Performance Assessment for SPOT VEGETATION Time Series.” International Journal of Remote Sensing 28 (22):5123–5141. doi:10.1080/01431160701253212.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.22 , pp. 5123-5141
    • Vancutsem, C.1    Pekel, J.-F.2    Bogaert, P.3    Defourny, P.4
  • 80
    • 84873166271 scopus 로고    scopus 로고
    • Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale
    • C.Vancutsem, E.Marinho, F.Kayitakire, L.See, and S.Fritz. 2012. “Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale.” Remote Sensing 5 (1):19–41. doi:10.3390/rs5010019.
    • (2012) Remote Sensing , vol.5 , Issue.1 , pp. 19-41
    • Vancutsem, C.1    Marinho, E.2    Kayitakire, F.3    See, L.4    Fritz, S.5
  • 84
    • 84944743397 scopus 로고    scopus 로고
    • Automated Annual Cropland Mapping Using Knowledge-Based Temporal Features
    • F.Waldner, G.S.Canto, and P.Defourny. 2015. “Automated Annual Cropland Mapping Using Knowledge-Based Temporal Features.” ISPRS Journal of Photogrammetry and Remote Sensing 110:1–13. doi:10.1016/j.isprsjprs.2015.09.013.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 85
    • 84952837431 scopus 로고    scopus 로고
    • Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment
    • F.Waldner, M.A.B.Ebbe, K.Cressman, and P.Defourny. 2015a. “Operational Monitoring of the Desert Locust Habitat with Earth Observation:An Assessment.” ISPRS International Journal of Geo-Information 4 (4):2379–2400. doi:10.3390/ijgi4042379.
    • (2015) ISPRS International Journal of Geo-Information , vol.4 , Issue.4 , pp. 2379-2400
    • Waldner, F.1    Ebbe, M.A.B.2    Cressman, K.3    Defourny, P.4
  • 86
    • 84933557278 scopus 로고    scopus 로고
    • Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps
    • F.Waldner, S.Fritz, A.D.Gregorio, and P.Defourny. 2015b. “Mapping Priorities to Focus Cropland Mapping Activities:Fitness Assessment of Existing Global, Regional and National Cropland Maps.” Remote Sensing 7 (6):7959–7986. doi:10.3390/rs70607959.
    • (2015) Remote Sensing , vol.7 , Issue.6 , pp. 7959-7986
    • Waldner, F.1    Fritz, S.2    Gregorio, A.D.3    Defourny, P.4
  • 87
    • 84982944935 scopus 로고    scopus 로고
    • A Unified Cropland Layer at 250 m for Global Agriculture Monitoring
    • F.Waldner, S.Fritz, A.D.Gregorio, D.Plotnikov, S.Bartalev, N.Kussul, P.Gong, et al. 2016. “A Unified Cropland Layer at 250 m for Global Agriculture Monitoring.” Data 1 (1):3. doi:10.3390/data1010003.
    • (2016) Data , vol.1 , Issue.1 , pp. 3
    • Waldner, F.1    Fritz, S.2    Gregorio, A.D.3    Plotnikov, D.4    Bartalev, S.5    Kussul, N.6    Gong, P.7
  • 88
    • 39749173163 scopus 로고    scopus 로고
    • Large-Area Crop Mapping Using Time-Series MODIS 250 M NDVI Data: An Assessment for the US Central Great Plains
    • B.D.Wardlow, and S.L.Egbert. 2008. “Large-Area Crop Mapping Using Time-Series MODIS 250 M NDVI Data:An Assessment for the US Central Great Plains.” Remote Sensing of Environment 112 (3):1096–1116. doi:10.1016/j.rse.2007.07.019.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.3 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 89
    • 67651115922 scopus 로고    scopus 로고
    • Monitoring of Cropland Practices for Carbon Sequestration Purposes in North Central Montana by Landsat Remote Sensing
    • J.D.Watts, R.L.Lawrence, P.R.Miller, and C.Montagne. 2009. “Monitoring of Cropland Practices for Carbon Sequestration Purposes in North Central Montana by Landsat Remote Sensing.” Remote Sensing of Environment 113 (9):1843–1852. doi:10.1016/j.rse.2009.04.015.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.9 , pp. 1843-1852
    • Watts, J.D.1    Lawrence, R.L.2    Miller, P.R.3    Montagne, C.4
  • 90
    • 57649219609 scopus 로고    scopus 로고
    • Remotely Sensed Estimation of Cropland in China: A Comparison of the Maps Derived from Four Global Land Cover Datasets
    • W.Wu, R.Shibasaki, P.Yang, Q.Zhou, and H.Tang. 2008. “Remotely Sensed Estimation of Cropland in China:A Comparison of the Maps Derived from Four Global Land Cover Datasets.” Canadian Journal of Remote Sensing 34 (5):467–479. doi:10.5589/m08-059.
    • (2008) Canadian Journal of Remote Sensing , vol.34 , Issue.5 , pp. 467-479
    • Wu, W.1    Shibasaki, R.2    Yang, P.3    Zhou, Q.4    Tang, H.5
  • 92
  • 93
    • 84884264508 scopus 로고    scopus 로고
    • Efficient Corn and Soybean Mapping with Temporal Extendability: A Multi-Year Experiment Using Landsat Imagery
    • L.Zhong, P.Gong, and G.S.Biging. 2014. “Efficient Corn and Soybean Mapping with Temporal Extendability:A Multi-Year Experiment Using Landsat Imagery.” Remote Sensing of Environment 140:1–13. doi:10.1016/j.rse.2013.08.023.
    • (2014) Remote Sensing of Environment , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.