메뉴 건너뛰기




Volumn 10, Issue 10, 2018, Pages

Slim and efficient neural network design for resource-constrained sar target recognition

Author keywords

Automatic target recognition (ATR); Deep learning; Fast algorithm; Model compression; Synthetic aperture radar (SAR)

Indexed keywords

AUTOMATIC TARGET RECOGNITION; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; DIGITAL STORAGE; NEURAL NETWORKS; SYNTHETIC APERTURE RADAR;

EID: 85055445652     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10101618     Document Type: Article
Times cited : (46)

References (38)
  • 1
    • 84907474499 scopus 로고    scopus 로고
    • A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model
    • Wang, P.; Liu, W.; Chen, J.; Niu, M.; Yang, W. A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1225-1235
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 1225-1235
    • Wang, P.1    Liu, W.2    Chen, J.3    Niu, M.4    Yang, W.5
  • 4
    • 85053085871 scopus 로고    scopus 로고
    • Objects Detection and Recognition System Using Artificial Neural Networks and Drones
    • Pietrow, D.; Matuszewski, J. Objects Detection and Recognition System Using Artificial Neural Networks and Drones. J. Electr. Eng. 2018, 6, 46-51
    • (2018) J. Electr. Eng , vol.6 , pp. 46-51
    • Pietrow, D.1    Matuszewski, J.2
  • 5
    • 85047501139 scopus 로고    scopus 로고
    • Radar signal identification using a neural network and pattern recognition methods
    • Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 20-24 February
    • Matuszewski, J. Radar signal identification using a neural network and pattern recognition methods. In Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 20-24 February 2018; pp. 79-83
    • (2018) Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics , pp. 79-83
    • Matuszewski, J.1
  • 6
    • 85055423840 scopus 로고
    • Moving and stationary target acquisition and recognition (MSTAR) public dataset
    • Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) public dataset. Technical report. Proc. SPIE 1995, 3370, 481-493
    • (1995) Technical report. Proc. SPIE , vol.3370 , pp. 481-493
    • Diemunsch, J.R.1    Wissinger, J.2
  • 7
    • 0002423099 scopus 로고
    • An overview of automatic target recognition
    • Dudgeon, D.E.; Lacoss, R. An overview of automatic target recognition. Lincoln Lab. J. 1993, 6, 3-10
    • (1993) Lincoln Lab. J , vol.6 , pp. 3-10
    • Dudgeon, D.E.1    Lacoss, R.2
  • 8
    • 85021136781 scopus 로고    scopus 로고
    • A novel target detection method for SAR images based on shadow proposal and saliency analysis
    • Gao, F.; You, J.;Wang, J.; Sun, J.; Yang, E.; Zhou, H. A novel target detection method for SAR images based on shadow proposal and saliency analysis. Neurocomputing 2017, 267, 220-231
    • (2017) Neurocomputing , vol.267 , pp. 220-231
    • Gao, F.1    You, J.2    Wang, J.3    Sun, J.4    Yang, E.5    Zhou, H.6
  • 9
    • 84904740760 scopus 로고    scopus 로고
    • Modified polar mapping classifier for SAR automatic target recognition
    • Park, J.I.; Kim, K.T. Modified polar mapping classifier for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1092-1107.10.1109/TAES.2013.120378
    • (2014) IEEE Trans. Aerosp. Electron. Syst , vol.50 , pp. 1092-1107
    • Park, J.I.1    Kim, K.T.2
  • 10
    • 85019110011 scopus 로고    scopus 로고
    • A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction
    • Wang, L.; Zhang, F.; Li, W.; Xie, X.; Hu, W. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction. J. Radars 2015, 4, 658-665
    • (2015) J. Radars , vol.4 , pp. 658-665
    • Wang, L.1    Zhang, F.2    Li, W.3    Xie, X.4    Hu, W.5
  • 12
    • 84930016721 scopus 로고    scopus 로고
    • Classification of ships in TerraSAR-X images based on 3D models and silhouette matching
    • Aachen, Germany, 7-10 June
    • Knapskog, A.O. Classification of ships in TerraSAR-X images based on 3D models and silhouette matching. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 7-10 June 2010; pp. 1-4
    • (2010) Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR) , pp. 1-4
    • Knapskog, A.O.1
  • 13
    • 0035300682 scopus 로고    scopus 로고
    • Support vector machines for SAR automatic target recognition
    • Zhao, Q.; Principe, J.C. Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 643-654
    • (2001) IEEE Trans. Aerosp. Electron. Syst , vol.37 , pp. 643-654
    • Zhao, Q.1    Principe, J.C.2
  • 17
    • 84992303973 scopus 로고    scopus 로고
    • Target Classification Using the Deep Convolutional Networks for SAR Images
    • Chen, S.;Wang, H.; Xu, F.; Jin, Y.Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806-4817
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 4806-4817
    • Chen, S.1    Wang, H.2    Xu, F.3    Jin, Y.Q.4
  • 18
    • 84947126879 scopus 로고    scopus 로고
    • High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
    • Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351-2355
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 2351-2355
    • Geng, J.1    Fan, J.2    Wang, H.3    Ma, X.4    Li, B.5    Chen, F.6
  • 19
    • 84911391087 scopus 로고    scopus 로고
    • Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data
    • Quebec City, QC, Canada, 13-18 July
    • Lv, Q.; Dou, Y.; Niu, X.; Xu, J.; Li, B. Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13-18 July 2014; pp. 4679-4682
    • (2014) Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium , pp. 4679-4682
    • Lv, Q.1    Dou, Y.2    Niu, X.3    Xu, J.4    Li, B.5
  • 20
    • 84973527507 scopus 로고    scopus 로고
    • Application of deep learning to polarimetric SAR classification
    • Hangzhou:China, 14-16 October
    • Liu, C.; Yin, J.; Yang, J. Application of deep learning to polarimetric SAR classification. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14-16 October 2015; pp. 1-4
    • (2015) Proceedings of the IET International Radar Conference 2015 , pp. 1-4
    • Liu, C.1    Yin, J.2    Yang, J.3
  • 21
    • 84962606109 scopus 로고    scopus 로고
    • Target Classification in Oceanographic SAR Images With Deep Neural Networks: Architecture and Initial Results
    • Milan, Italy, 26-31 July
    • Bentes, C.; Velotto, D.; Lehner, S. Target Classification in Oceanographic SAR Images With Deep Neural Networks: Architecture and Initial Results. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 3703-3706
    • (2015) Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3703-3706
    • Bentes, C.1    Velotto, D.2    Lehner, S.3
  • 23
    • 85034225650 scopus 로고    scopus 로고
    • Multi-Aspect-Aware Bidirectional LSTM Networks for Synthetic Aperture Radar Target Recognition
    • Zhang, F.; Hu, C.; Yin, Q.; Li, W.; Li, H.C.; Hong, W. Multi-Aspect-Aware Bidirectional LSTM Networks for Synthetic Aperture Radar Target Recognition. IEEE Access 2017, 5, 26880-26891
    • (2017) IEEE Access , vol.5 , pp. 26880-26891
    • Zhang, F.1    Hu, C.2    Yin, Q.3    Li, W.4    Li, H.C.5    Hong, W.6
  • 25
    • 85034262535 scopus 로고    scopus 로고
    • Zero-shot learning of SAR target feature space with deep generative neural networks
    • Song, Q.; Xu, F. Zero-shot learning of SAR target feature space with deep generative neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2245-2249
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 2245-2249
    • Song, Q.1    Xu, F.2
  • 27
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu, W.; Huang, Y.;Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619
    • (2015) J. Sens , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 28
    • 85018916287 scopus 로고    scopus 로고
    • Synthetic aperture radar image synthesis by using generative adversarial nets
    • Guo, J.; Lei, B.; Ding, C.; Zhang, Y. Synthetic aperture radar image synthesis by using generative adversarial nets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1111-1115
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 1111-1115
    • Guo, J.1    Lei, B.2    Ding, C.3    Zhang, Y.4
  • 29
    • 85048982547 scopus 로고    scopus 로고
    • A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images
    • Gao, F.; Yang, Y.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images. Remote Sens. 2018, 10
    • (2018) Remote Sens , pp. 10
    • Gao, F.1    Yang, Y.2    Wang, J.3    Sun, J.4    Yang, E.5    Zhou, H.6
  • 30
    • 85029395781 scopus 로고    scopus 로고
    • Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data
    • Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907
    • (2017) Remote Sens , vol.9 , pp. 907
    • Huang, Z.1    Pan, Z.2    Lei, B.3
  • 31
    • 85018916041 scopus 로고    scopus 로고
    • Deep convolutional highway unit network for sar target classification with limited labeled training data
    • Lin, Z.; Ji, K.; Kang, M.; Leng, X.; Zou, H. Deep convolutional highway unit network for sar target classification with limited labeled training data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1091-1095
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 1091-1095
    • Lin, Z.1    Ji, K.2    Kang, M.3    Leng, X.4    Zou, H.5
  • 38
    • 0037984000 scopus 로고    scopus 로고
    • An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions
    • Mossing, J.C.; Ross, T.D. An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions. Proc. SPIE 1998, 3370, 554-565
    • (1998) Proc. SPIE , vol.3370 , pp. 554-565
    • Mossing, J.C.1    Ross, T.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.