-
1
-
-
84907474499
-
A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model
-
Wang, P.; Liu, W.; Chen, J.; Niu, M.; Yang, W. A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1225-1235
-
(2014)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 1225-1235
-
-
Wang, P.1
Liu, W.2
Chen, J.3
Niu, M.4
Yang, W.5
-
2
-
-
85041225554
-
Multiple Mode SAR Raw Data Simulation and Parallel Acceleration for Gaofen-3 Mission
-
Zhang, F.; Yao, X.; Tang, H.; Yin, Q.; Hu, Y.; Lei, B. Multiple Mode SAR Raw Data Simulation and Parallel Acceleration for Gaofen-3 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2115-2126
-
(2018)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.11
, pp. 2115-2126
-
-
Zhang, F.1
Yao, X.2
Tang, H.3
Yin, Q.4
Hu, Y.5
Lei, B.6
-
3
-
-
85028591653
-
Neural network application for emitter identification
-
Prague, Czech Republic, 28-30 June
-
Matuszewski, J.; Sikorska-Lukasiewicz, K. Neural network application for emitter identification. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28-30 June 2017; pp. 1-8
-
(2017)
Proceedings of the 2017 18th International Radar Symposium (IRS)
, pp. 1-8
-
-
Matuszewski, J.1
Sikorska-Lukasiewicz, K.2
-
4
-
-
85053085871
-
Objects Detection and Recognition System Using Artificial Neural Networks and Drones
-
Pietrow, D.; Matuszewski, J. Objects Detection and Recognition System Using Artificial Neural Networks and Drones. J. Electr. Eng. 2018, 6, 46-51
-
(2018)
J. Electr. Eng
, vol.6
, pp. 46-51
-
-
Pietrow, D.1
Matuszewski, J.2
-
5
-
-
85047501139
-
Radar signal identification using a neural network and pattern recognition methods
-
Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 20-24 February
-
Matuszewski, J. Radar signal identification using a neural network and pattern recognition methods. In Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 20-24 February 2018; pp. 79-83
-
(2018)
Proceedings of the 2018 14th International Conference on Advanced Trends in Radioelecrtronics
, pp. 79-83
-
-
Matuszewski, J.1
-
6
-
-
85055423840
-
Moving and stationary target acquisition and recognition (MSTAR) public dataset
-
Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) public dataset. Technical report. Proc. SPIE 1995, 3370, 481-493
-
(1995)
Technical report. Proc. SPIE
, vol.3370
, pp. 481-493
-
-
Diemunsch, J.R.1
Wissinger, J.2
-
7
-
-
0002423099
-
An overview of automatic target recognition
-
Dudgeon, D.E.; Lacoss, R. An overview of automatic target recognition. Lincoln Lab. J. 1993, 6, 3-10
-
(1993)
Lincoln Lab. J
, vol.6
, pp. 3-10
-
-
Dudgeon, D.E.1
Lacoss, R.2
-
8
-
-
85021136781
-
A novel target detection method for SAR images based on shadow proposal and saliency analysis
-
Gao, F.; You, J.;Wang, J.; Sun, J.; Yang, E.; Zhou, H. A novel target detection method for SAR images based on shadow proposal and saliency analysis. Neurocomputing 2017, 267, 220-231
-
(2017)
Neurocomputing
, vol.267
, pp. 220-231
-
-
Gao, F.1
You, J.2
Wang, J.3
Sun, J.4
Yang, E.5
Zhou, H.6
-
9
-
-
84904740760
-
Modified polar mapping classifier for SAR automatic target recognition
-
Park, J.I.; Kim, K.T. Modified polar mapping classifier for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1092-1107.10.1109/TAES.2013.120378
-
(2014)
IEEE Trans. Aerosp. Electron. Syst
, vol.50
, pp. 1092-1107
-
-
Park, J.I.1
Kim, K.T.2
-
10
-
-
85019110011
-
A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction
-
Wang, L.; Zhang, F.; Li, W.; Xie, X.; Hu, W. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction. J. Radars 2015, 4, 658-665
-
(2015)
J. Radars
, vol.4
, pp. 658-665
-
-
Wang, L.1
Zhang, F.2
Li, W.3
Xie, X.4
Hu, W.5
-
11
-
-
84979874824
-
Target detection and recognition in SAR imagery based on KFDA
-
in press
-
Gao, F.; Mei, J.; Sun, J.; Wang, J.; Yang, E.; Hussain, A. Target detection and recognition in SAR imagery based on KFDA. J. Syst. Eng. Electron. 2015, in press
-
(2015)
J. Syst. Eng. Electron
-
-
Gao, F.1
Mei, J.2
Sun, J.3
Wang, J.4
Yang, E.5
Hussain, A.6
-
12
-
-
84930016721
-
Classification of ships in TerraSAR-X images based on 3D models and silhouette matching
-
Aachen, Germany, 7-10 June
-
Knapskog, A.O. Classification of ships in TerraSAR-X images based on 3D models and silhouette matching. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 7-10 June 2010; pp. 1-4
-
(2010)
Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR)
, pp. 1-4
-
-
Knapskog, A.O.1
-
13
-
-
0035300682
-
Support vector machines for SAR automatic target recognition
-
Zhao, Q.; Principe, J.C. Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 643-654
-
(2001)
IEEE Trans. Aerosp. Electron. Syst
, vol.37
, pp. 643-654
-
-
Zhao, Q.1
Principe, J.C.2
-
14
-
-
34248636550
-
Adaptive boosting for SAR automatic target recognition
-
Sun, Y.; Liu, Z.; Todorovic, S.; Li, J. Adaptive boosting for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 112-125
-
(2007)
IEEE Trans. Aerosp. Electron. Syst
, vol.43
, pp. 112-125
-
-
Sun, Y.1
Liu, Z.2
Todorovic, S.3
Li, J.4
-
15
-
-
0033722352
-
Model-based ATR using synthetic aperture radar
-
Alexandria, VA, USA, 12 May
-
Hummel, R. Model-based ATR using synthetic aperture radar. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Alexandria, VA, USA, 12 May 2000; pp. 856-861
-
(2000)
Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR)
, pp. 856-861
-
-
Hummel, R.1
-
16
-
-
0029594491
-
Neural networks for automatic target recognition
-
Rogers, S.K.; Colombi, J.M.; Martin, C.E.; Gainey, J.C. Neural networks for automatic target recognition. Neural Netw. 1995, 8, 1153-1184
-
(1995)
Neural Netw
, vol.8
, pp. 1153-1184
-
-
Rogers, S.K.1
Colombi, J.M.2
Martin, C.E.3
Gainey, J.C.4
-
17
-
-
84992303973
-
Target Classification Using the Deep Convolutional Networks for SAR Images
-
Chen, S.;Wang, H.; Xu, F.; Jin, Y.Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806-4817
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 4806-4817
-
-
Chen, S.1
Wang, H.2
Xu, F.3
Jin, Y.Q.4
-
18
-
-
84947126879
-
High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
-
Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351-2355
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 2351-2355
-
-
Geng, J.1
Fan, J.2
Wang, H.3
Ma, X.4
Li, B.5
Chen, F.6
-
19
-
-
84911391087
-
Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data
-
Quebec City, QC, Canada, 13-18 July
-
Lv, Q.; Dou, Y.; Niu, X.; Xu, J.; Li, B. Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13-18 July 2014; pp. 4679-4682
-
(2014)
Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium
, pp. 4679-4682
-
-
Lv, Q.1
Dou, Y.2
Niu, X.3
Xu, J.4
Li, B.5
-
20
-
-
84973527507
-
Application of deep learning to polarimetric SAR classification
-
Hangzhou:China, 14-16 October
-
Liu, C.; Yin, J.; Yang, J. Application of deep learning to polarimetric SAR classification. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14-16 October 2015; pp. 1-4
-
(2015)
Proceedings of the IET International Radar Conference 2015
, pp. 1-4
-
-
Liu, C.1
Yin, J.2
Yang, J.3
-
21
-
-
84962606109
-
Target Classification in Oceanographic SAR Images With Deep Neural Networks: Architecture and Initial Results
-
Milan, Italy, 26-31 July
-
Bentes, C.; Velotto, D.; Lehner, S. Target Classification in Oceanographic SAR Images With Deep Neural Networks: Architecture and Initial Results. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 3703-3706
-
(2015)
Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3703-3706
-
-
Bentes, C.1
Velotto, D.2
Lehner, S.3
-
22
-
-
84957695633
-
SAR ATR Based on Dividing CNN into CAE and SNN
-
Singapore, 1-4 September
-
Li, X.; Li, C.;Wang, P.; Men, Z.; Xu, H. SAR ATR Based on Dividing CNN into CAE and SNN. In Proceedings of the IEEE Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1-4 September 2015; pp. 676-679
-
(2015)
Proceedings of the IEEE Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)
, pp. 676-679
-
-
Li, X.1
Li, C.2
Wang, P.3
Men, Z.4
Xu, H.5
-
23
-
-
85034225650
-
Multi-Aspect-Aware Bidirectional LSTM Networks for Synthetic Aperture Radar Target Recognition
-
Zhang, F.; Hu, C.; Yin, Q.; Li, W.; Li, H.C.; Hong, W. Multi-Aspect-Aware Bidirectional LSTM Networks for Synthetic Aperture Radar Target Recognition. IEEE Access 2017, 5, 26880-26891
-
(2017)
IEEE Access
, vol.5
, pp. 26880-26891
-
-
Zhang, F.1
Hu, C.2
Yin, Q.3
Li, W.4
Li, H.C.5
Hong, W.6
-
24
-
-
85038876794
-
SAR Automatic Target Recognition Based on Multiview Deep Learning Framework
-
Pei, J.; Huang, Y.; Huo, W.; Zhang, Y.; Yang, J.; Yeo, T.S. SAR Automatic Target Recognition Based on Multiview Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196-2210
-
(2018)
IEEE Trans. Geosci. Remote Sens
, vol.56
, pp. 2196-2210
-
-
Pei, J.1
Huang, Y.2
Huo, W.3
Zhang, Y.4
Yang, J.5
Yeo, T.S.6
-
25
-
-
85034262535
-
Zero-shot learning of SAR target feature space with deep generative neural networks
-
Song, Q.; Xu, F. Zero-shot learning of SAR target feature space with deep generative neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2245-2249
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 2245-2249
-
-
Song, Q.1
Xu, F.2
-
26
-
-
85047808910
-
DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation
-
Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 1-9
-
(2018)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, pp. 1-9
-
-
Li, R.1
Liu, W.2
Yang, L.3
Sun, S.4
Hu, W.5
Zhang, F.6
Li, W.7
-
27
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
Hu, W.; Huang, Y.;Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619
-
(2015)
J. Sens
, vol.2015
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
28
-
-
85018916287
-
Synthetic aperture radar image synthesis by using generative adversarial nets
-
Guo, J.; Lei, B.; Ding, C.; Zhang, Y. Synthetic aperture radar image synthesis by using generative adversarial nets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1111-1115
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 1111-1115
-
-
Guo, J.1
Lei, B.2
Ding, C.3
Zhang, Y.4
-
29
-
-
85048982547
-
A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images
-
Gao, F.; Yang, Y.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images. Remote Sens. 2018, 10
-
(2018)
Remote Sens
, pp. 10
-
-
Gao, F.1
Yang, Y.2
Wang, J.3
Sun, J.4
Yang, E.5
Zhou, H.6
-
30
-
-
85029395781
-
Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data
-
Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907
-
(2017)
Remote Sens
, vol.9
, pp. 907
-
-
Huang, Z.1
Pan, Z.2
Lei, B.3
-
31
-
-
85018916041
-
Deep convolutional highway unit network for sar target classification with limited labeled training data
-
Lin, Z.; Ji, K.; Kang, M.; Leng, X.; Zou, H. Deep convolutional highway unit network for sar target classification with limited labeled training data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1091-1095
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 1091-1095
-
-
Lin, Z.1
Ji, K.2
Kang, M.3
Leng, X.4
Zou, H.5
-
32
-
-
84988340112
-
-
arXiv
-
Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360
-
(2016)
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size
-
-
Iandola, F.N.1
Han, S.2
Moskewicz, M.W.3
Ashraf, K.4
Dally, W.J.5
Keutzer, K.6
-
34
-
-
84965172096
-
-
arXiv
-
Chen, W.;Wilson, J.T.; Tyree, S.;Weinberger, K.Q.; Chen, Y. Compressing Neural Networks with the Hashing Trick. arXiv 2015, arXiv:1504.04788
-
(2015)
Compressing Neural Networks with the Hashing Trick
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
38
-
-
0037984000
-
An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions
-
Mossing, J.C.; Ross, T.D. An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions. Proc. SPIE 1998, 3370, 554-565
-
(1998)
Proc. SPIE
, vol.3370
, pp. 554-565
-
-
Mossing, J.C.1
Ross, T.D.2
|