메뉴 건너뛰기




Volumn 18, Issue 1, 2018, Pages

Correction to: Automatic differentiation of Glaucoma visual field from non-glaucoma visual field using deep convolutional neural network (BMC Medical Imaging (2018) 18: 35 DOI: 10.1186/s12880-018-0273-5);Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network

Author keywords

Deep learning; Glaucoma; Visual field

Indexed keywords

ADULT; AGED; CLINICAL TRIAL; FEMALE; GLAUCOMA; HUMAN; MACHINE LEARNING; MIDDLE AGED; MULTICENTER STUDY; PERIMETRY; PROCEDURES; REPRODUCIBILITY;

EID: 85054441678     PISSN: None     EISSN: 14712342     Source Type: Journal    
DOI: 10.1186/s12880-019-0339-z     Document Type: Erratum
Times cited : (90)

References (21)
  • 1
    • 79954621581 scopus 로고    scopus 로고
    • Glaucoma
    • Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367-77.
    • (2011) Lancet , vol.377 , Issue.9774 , pp. 1367-1377
    • Quigley, H.A.1
  • 3
    • 78649465141 scopus 로고    scopus 로고
    • Prevalence of glaucoma in North China: the Beijing eye study
    • Wang YX, Xu L, Yang H, Jonas JB. Prevalence of glaucoma in North China: the Beijing eye study. Am J Ophthalmol. 2010;150(6):917-24.
    • (2010) Am J Ophthalmol , vol.150 , Issue.6 , pp. 917-924
    • Wang, Y.X.1    Xu, L.2    Yang, H.3    Jonas, J.B.4
  • 4
    • 33746721044 scopus 로고    scopus 로고
    • Prevalence and clinical characteristics of glaucoma in adult Chinese: a population-based study in Liwan District, Guangzhou
    • He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS, Khaw PT. Prevalence and clinical characteristics of glaucoma in adult Chinese: a population-based study in Liwan District, Guangzhou. Invest Ophthalmol Vis Sci. 2006;47(7):2782-8.
    • (2006) Invest Ophthalmol Vis Sci , vol.47 , Issue.7 , pp. 2782-2788
    • He, M.1    Foster, P.J.2    Ge, J.3    Huang, W.4    Zheng, Y.5    Friedman, D.S.6    Lee, P.S.7    Khaw, P.T.8
  • 6
    • 0033808223 scopus 로고    scopus 로고
    • 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators
    • The Advanced Glaucoma Intervention Study (AGIS). 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-40.
    • (2000) Am J Ophthalmol , vol.130 , Issue.4 , pp. 429-440
  • 7
    • 58849133280 scopus 로고    scopus 로고
    • Visual field progression in the collaborative initial Glaucoma treatment study the impact of treatment and other baseline factors
    • Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK, Investigators CS. Visual field progression in the collaborative initial Glaucoma treatment study the impact of treatment and other baseline factors. Ophthalmology. 2009;116(2):200-7.
    • (2009) Ophthalmology , vol.116 , Issue.2 , pp. 200-207
    • Musch, D.C.1    Gillespie, B.W.2    Lichter, P.R.3    Niziol, L.M.4    Janz, N.K.5    Investigators, C.S.6
  • 9
    • 0028143590 scopus 로고
    • Visual field test scoring and reliability
    • Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology. 1994;101(8):1445-55.
    • (1994) Ophthalmology , vol.101 , Issue.8 , pp. 1445-1455
  • 10
    • 30344452265 scopus 로고    scopus 로고
    • Enhanced Glaucoma staging system (GSS 2) for classifying functional damage in glaucoma
    • Brusini P, Filacorda S. Enhanced Glaucoma staging system (GSS 2) for classifying functional damage in glaucoma. J Glaucoma. 2006;15(1):40-6.
    • (2006) J Glaucoma , vol.15 , Issue.1 , pp. 40-46
    • Brusini, P.1    Filacorda, S.2
  • 11
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-10.
    • (2016) JAMA , vol.316 , Issue.22 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6    Venugopalan, S.7    Widner, K.8    Madams, T.9    Cuadros, J.10
  • 12
    • 85025452709 scopus 로고    scopus 로고
    • An artificial intelligence platform for the multihospital collaborative management of congenital cataracts
    • Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, An Y, Lin Z, Li X, Chen J, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;1:0024.
    • (2017) Nat Biomed Eng , vol.1 , pp. 0024
    • Long, E.1    Lin, H.2    Liu, Z.3    Wu, X.4    Wang, L.5    Jiang, J.6    An, Y.7    Lin, Z.8    Li, X.9    Chen, J.10
  • 13
    • 84982243237 scopus 로고    scopus 로고
    • Detecting Preperimetric Glaucoma with standard automated Perimetry using a deep learning classifier
    • Asaoka R, Murata H, Iwase A, Araie M. Detecting Preperimetric Glaucoma with standard automated Perimetry using a deep learning classifier. Ophthalmology. 2016;123(9):1974-80.
    • (2016) Ophthalmology , vol.123 , Issue.9 , pp. 1974-1980
    • Asaoka, R.1    Murata, H.2    Iwase, A.3    Araie, M.4
  • 15
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: delving deep into convolutional nets
    • arXiv preprint
    • Chatfield K, Simonyan K, Vedaldi A, Zisserman A: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:14053531 2014.
    • (2014)
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 16
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arXiv preprint
    • Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 2014.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273-97.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175-85.
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 21


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.