메뉴 건너뛰기




Volumn 125, Issue , 2019, Pages 119-174

On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi equations

Author keywords

Differentiability in the Wasserstein space; Hamilton Jacobi equations in the Wasserstein space; Viscosity solutions

Indexed keywords


EID: 85053714876     PISSN: 00217824     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matpur.2018.09.003     Document Type: Article
Times cited : (104)

References (20)
  • 1
    • 84895906937 scopus 로고    scopus 로고
    • On a class of first-order Hamilton–Jacobi equations in metric spaces
    • Ambrosio, L., Feng, J., On a class of first-order Hamilton–Jacobi equations in metric spaces. J. Differ. Equ. 256:7 (2014), 2194–2245.
    • (2014) J. Differ. Equ. , vol.256 , Issue.7 , pp. 2194-2245
    • Ambrosio, L.1    Feng, J.2
  • 2
    • 37649010339 scopus 로고    scopus 로고
    • Hamiltonian ODE's in the Wasserstein space of probability measures
    • Ambrosio, L., Gangbo, W., Hamiltonian ODE's in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61:2 (2008), 18–53.
    • (2008) Commun. Pure Appl. Math. , vol.61 , Issue.2 , pp. 18-53
    • Ambrosio, L.1    Gangbo, W.2
  • 3
    • 31744443874 scopus 로고    scopus 로고
    • Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures
    • ETH Zurich Birkhäuser
    • Ambrosio, L., Gigli, N., Savaré, G., Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures. Lectures in Mathematics, 2005, ETH Zurich, Birkhäuser.
    • (2005) Lectures in Mathematics
    • Ambrosio, L.1    Gigli, N.2    Savaré, G.3
  • 4
    • 84990623199 scopus 로고
    • Polar factorization and monotone rearrangement of vector-valued functions
    • Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. XLIV (1991), 375–417.
    • (1991) Commun. Pure Appl. Math. , vol.44 , pp. 375-417
    • Brenier, Y.1
  • 6
    • 0033285086 scopus 로고    scopus 로고
    • A survey of subdifferential calculus with applications
    • Borwein, J.M., Zhu, Q.J., A survey of subdifferential calculus with applications. Nonlinear Anal. 38 (1999), 687–773.
    • (1999) Nonlinear Anal. , vol.38 , pp. 687-773
    • Borwein, J.M.1    Zhu, Q.J.2
  • 7
    • 0030366438 scopus 로고    scopus 로고
    • Boundary regularity of maps with convex potentials
    • Caffarelli, L., Boundary regularity of maps with convex potentials. Ann. Math. (2) 144:3 (1996), 453–496.
    • (1996) Ann. Math. (2) , vol.144 , Issue.3 , pp. 453-496
    • Caffarelli, L.1
  • 8
    • 77949562949 scopus 로고    scopus 로고
    • The disintegration of the Lebesgue measure on the faces of a convex function
    • Caravenna, L., Daneri, S., The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258 (2010), 3604–3661.
    • (2010) J. Funct. Anal. , vol.258 , pp. 3604-3661
    • Caravenna, L.1    Daneri, S.2
  • 9
    • 85068762191 scopus 로고    scopus 로고
    • Notes on Mean-Field Games
    • Lectures by P.L. Lions Collège de France
    • Cardaliaguet, P., Notes on Mean-Field Games. Lectures by P.L. Lions, 2010, Collège de France.
    • (2010)
    • Cardaliaguet, P.1
  • 10
    • 85053714784 scopus 로고    scopus 로고
    • A partial Laplacian as an infinitesimal generator on the Wasserstein space, submitted for publication.
    • Y.T. Chow, W. Gangbo, A partial Laplacian as an infinitesimal generator on the Wasserstein space, submitted for publication.
    • Chow, Y.T.1    Gangbo, W.2
  • 11
    • 46549092471 scopus 로고
    • Hamilton–Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions
    • Crandall, M.G., Lions, P.-L., Hamilton–Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions. J. Funct. Anal. 62 (1985), 379–396.
    • (1985) J. Funct. Anal. , vol.62 , pp. 379-396
    • Crandall, M.G.1    Lions, P.-L.2
  • 12
    • 46149138623 scopus 로고
    • Hamilton–Jacobi equations in infinite dimensions II. Existence of viscosity solutions
    • Crandall, M.G., Lions, P.-L., Hamilton–Jacobi equations in infinite dimensions II. Existence of viscosity solutions. J. Funct. Anal. 65 (1986), 368–405.
    • (1986) J. Funct. Anal. , vol.65 , pp. 368-405
    • Crandall, M.G.1    Lions, P.-L.2
  • 13
    • 46149127983 scopus 로고
    • Hamilton–Jacobi equations in infinite dimensions III
    • Crandall, M.G., Lions, P.-L., Hamilton–Jacobi equations in infinite dimensions III. J. Funct. Anal. 68 (1986), 214–247.
    • (1986) J. Funct. Anal. , vol.68 , pp. 214-247
    • Crandall, M.G.1    Lions, P.-L.2
  • 14
    • 84860541260 scopus 로고    scopus 로고
    • Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems
    • no. 993 (3 of 5)
    • Gangbo, W., Kim, H.K., Pacini, T., Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems. Memoirs of the AMS, vol. 211, 2011, 1–77 no. 993 (3 of 5).
    • (2011) Memoirs of the AMS , vol.211 , pp. 1-77
    • Gangbo, W.1    Kim, H.K.2    Pacini, T.3
  • 15
    • 77049105922 scopus 로고    scopus 로고
    • Hamilton–Jacobi equations in the Wasserstein space
    • Gangbo, W., Nguyen, T., Tudorascu, A., Hamilton–Jacobi equations in the Wasserstein space. Methods Appl. Anal. 15:2 (2008), 155–184.
    • (2008) Methods Appl. Anal. , vol.15 , Issue.2 , pp. 155-184
    • Gangbo, W.1    Nguyen, T.2    Tudorascu, A.3
  • 16
    • 84939463772 scopus 로고    scopus 로고
    • Metric viscosity solutions of Hamilton–Jacobi equations depending on local slopes
    • Gangbo, W., Swiech, A., Metric viscosity solutions of Hamilton–Jacobi equations depending on local slopes. Calc. Var. 54 (2015), 1183–1218.
    • (2015) Calc. Var. , vol.54 , pp. 1183-1218
    • Gangbo, W.1    Swiech, A.2
  • 17
    • 84860630927 scopus 로고    scopus 로고
    • 2 )
    • no. 1018 (end of volume)
    • 2 ). Memoirs of the AMS, vol. 216, 2012 no. 1018 (end of volume).
    • (2012) Memoirs of the AMS , vol.216
    • Gigli, N.1
  • 18
    • 36649022948 scopus 로고    scopus 로고
    • Some geometric calculations on Wasserstein space
    • Lott, J., Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277 (2008), 423–437.
    • (2008) Commun. Math. Phys. , vol.277 , pp. 423-437
    • Lott, J.1
  • 19
    • 84930482395 scopus 로고    scopus 로고
    • Value functions in the Wasserstein spaces: finite time horizons
    • Hynd, R., Kim, H.K., Value functions in the Wasserstein spaces: finite time horizons. J. Funct. Anal. 269 (2015), 968–997.
    • (2015) J. Funct. Anal. , vol.269 , pp. 968-997
    • Hynd, R.1    Kim, H.K.2
  • 20
    • 0000107568 scopus 로고
    • Differentiability of Lipschitz functions on Banach spaces
    • Preiss, D., Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91 (1990), 312–345.
    • (1990) J. Funct. Anal. , vol.91 , pp. 312-345
    • Preiss, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.