메뉴 건너뛰기




Volumn 256, Issue 7, 2014, Pages 2194-2245

On a class of first order Hamilton-Jacobi equations in metric spaces

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84895906937     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2013.12.018     Document Type: Article
Times cited : (78)

References (39)
  • 1
    • 37649010339 scopus 로고    scopus 로고
    • Hamiltonian ODEs in the Wasserstein space of probability measures
    • Ambrosio L., Gangbo W. Hamiltonian ODEs in the Wasserstein space of probability measures. Comm. Pure Appl. Math. 2008, LXI:18-53.
    • (2008) Comm. Pure Appl. Math. , vol.61 , pp. 18-53
    • Ambrosio, L.1    Gangbo, W.2
  • 3
    • 84895902186 scopus 로고    scopus 로고
    • Heat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case
    • Ambrosio L., Gigli N., Savaré G. Heat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case. Boll. Unione Mat. Ital. (9) 2012, V:575-629.
    • (2012) Boll. Unione Mat. Ital. (9) , vol.5 , pp. 575-629
    • Ambrosio, L.1    Gigli, N.2    Savaré, G.3
  • 4
    • 0036252419 scopus 로고    scopus 로고
    • Macroscopic fluctuation theory for stationary non-equilibrium states
    • Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., Landim C. Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 2002, 107(3-4):635-675.
    • (2002) J. Stat. Phys. , vol.107 , Issue.3-4 , pp. 635-675
    • Bertini, L.1    De Sole, A.2    Gabrielli, D.3    Jona-Lasinio, G.4    Landim, C.5
  • 8
    • 79551483277 scopus 로고    scopus 로고
    • Action functional and quasi-potential for the Burgers equation in a bounded interval
    • Bertini L., De Sole A., Gabrielli D., Jona-Lasinio G., Landim C. Action functional and quasi-potential for the Burgers equation in a bounded interval. Comm. Pure Appl. Math. 2011, 64(5):649-696.
    • (2011) Comm. Pure Appl. Math. , vol.64 , Issue.5 , pp. 649-696
    • Bertini, L.1    De Sole, A.2    Gabrielli, D.3    Jona-Lasinio, G.4    Landim, C.5
  • 9
    • 29044447618 scopus 로고    scopus 로고
    • Large deviations for a stochastic model of heat flow
    • Bertini L., Gabrielli D., Lebowitz J.L. Large deviations for a stochastic model of heat flow. J. Stat. Phys. 2005, 121(56):843-885.
    • (2005) J. Stat. Phys. , vol.121 , Issue.56 , pp. 843-885
    • Bertini, L.1    Gabrielli, D.2    Lebowitz, J.L.3
  • 10
    • 84966213239 scopus 로고
    • A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions
    • Borwein J.M., Preiss D. A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 1987, 303(2):517-527.
    • (1987) Trans. Amer. Math. Soc. , vol.303 , Issue.2 , pp. 517-527
    • Borwein, J.M.1    Preiss, D.2
  • 12
    • 44349141320 scopus 로고    scopus 로고
    • Deterministic differential games under probability knowledge of initial condition
    • Cardaliaguet P., Quincampoix M. Deterministic differential games under probability knowledge of initial condition. Int. Game Theory Rev. 2008, 10(1):116.
    • (2008) Int. Game Theory Rev. , vol.10 , Issue.1 , pp. 116
    • Cardaliaguet, P.1    Quincampoix, M.2
  • 13
    • 84895904351 scopus 로고    scopus 로고
    • Information Issues in Differential Game Theory
    • Cardaliaguet P. Information Issues in Differential Game Theory. ESAIM Proc. March 2012, vol. 35:1-13.
    • (2012) ESAIM Proc. , vol.35 , pp. 1-13
    • Cardaliaguet, P.1
  • 14
    • 46549092471 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part I
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part I. J. Funct. Anal. 1985, 62(3):379-396.
    • (1985) J. Funct. Anal. , vol.62 , Issue.3 , pp. 379-396
    • Crandall, M.G.1    Lions, P.L.2
  • 15
    • 46149138623 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part II
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part II. J. Funct. Anal. 1986, 65(3):368-405.
    • (1986) J. Funct. Anal. , vol.65 , Issue.3 , pp. 368-405
    • Crandall, M.G.1    Lions, P.L.2
  • 16
    • 46149127983 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part III
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part III. J. Funct. Anal. 1986, 68(2):214-247.
    • (1986) J. Funct. Anal. , vol.68 , Issue.2 , pp. 214-247
    • Crandall, M.G.1    Lions, P.L.2
  • 17
    • 44949288472 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part IV
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part IV. J. Funct. Anal. 1990, 90(2):237-283.
    • (1990) J. Funct. Anal. , vol.90 , Issue.2 , pp. 237-283
    • Crandall, M.G.1    Lions, P.L.2
  • 18
    • 0001295449 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part V
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part V. J. Funct. Anal. 1991, 97(2):417-465.
    • (1991) J. Funct. Anal. , vol.97 , Issue.2 , pp. 417-465
    • Crandall, M.G.1    Lions, P.L.2
  • 19
    • 0001885872 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part VII
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part VII. J. Funct. Anal. 1994, 125(1):111-148.
    • (1994) J. Funct. Anal. , vol.125 , Issue.1 , pp. 111-148
    • Crandall, M.G.1    Lions, P.L.2
  • 20
    • 0002308268 scopus 로고
    • Hamilton-Jacobi equations in infinite dimensions, Part VI: Nonlinear A and Tataru's method refined
    • Dekker, New York, Evolution Equations, Control Theory, and Biomathematics
    • Crandall M.G., Lions P.L. Hamilton-Jacobi equations in infinite dimensions, Part VI: Nonlinear A and Tataru's method refined. Lect. Notes Pure Appl. Math. 1994, vol. 155:51-89. Dekker, New York.
    • (1994) Lect. Notes Pure Appl. Math. , vol.155 , pp. 51-89
    • Crandall, M.G.1    Lions, P.L.2
  • 21
  • 22
    • 80053284181 scopus 로고    scopus 로고
    • A Hamilton-Jacobi PDE in the space of measures and its associated compressible Euler equations
    • Feng J. A Hamilton-Jacobi PDE in the space of measures and its associated compressible Euler equations. C. R. Math. Acad. Sci. Paris 2011, 349(17-18):973-976.
    • (2011) C. R. Math. Acad. Sci. Paris , vol.349 , Issue.17-18 , pp. 973-976
    • Feng, J.1
  • 23
    • 62949185876 scopus 로고    scopus 로고
    • A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions
    • Feng J., Katsoulakis M. A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions. Arch. Ration. Mech. Anal. 2009, 192:275-310.
    • (2009) Arch. Ration. Mech. Anal. , vol.192 , pp. 275-310
    • Feng, J.1    Katsoulakis, M.2
  • 24
    • 43049128253 scopus 로고    scopus 로고
    • Large Deviation for Stochastic Processes
    • American Mathematical Society, Rhode Island
    • Feng J., Kurtz T.G. Large Deviation for Stochastic Processes. Math. Surveys Monogr. 2006, vol. 131. American Mathematical Society, Rhode Island.
    • (2006) Math. Surveys Monogr. , vol.131
    • Feng, J.1    Kurtz, T.G.2
  • 25
    • 84863416114 scopus 로고    scopus 로고
    • Hamilton-Jacobi equations in space of measures associated with a system of conservation laws
    • Feng J., Nguyen T. Hamilton-Jacobi equations in space of measures associated with a system of conservation laws. J. Math. Pures Appl. (9) 2012, 97(4):318-390.
    • (2012) J. Math. Pures Appl. (9) , vol.97 , Issue.4 , pp. 318-390
    • Feng, J.1    Nguyen, T.2
  • 26
    • 84877976598 scopus 로고    scopus 로고
    • Optimal control for a mixed flow of Hamiltonian and gradient type in space of probability measures
    • with Appendix B by A. Stefanov
    • Feng J., Swiech A. Optimal control for a mixed flow of Hamiltonian and gradient type in space of probability measures. Trans. Amer. Math. Soc. 2013, 365:3987-4039. with Appendix B by A. Stefanov.
    • (2013) Trans. Amer. Math. Soc. , vol.365 , pp. 3987-4039
    • Feng, J.1    Swiech, A.2
  • 27
    • 77049105922 scopus 로고    scopus 로고
    • Hamilton-Jacobi equations in the Wasserstein space
    • Gangbo W., Nguyen T., Tudorascu A. Hamilton-Jacobi equations in the Wasserstein space. Methods Appl. Anal. 2008, 15(2):155-184.
    • (2008) Methods Appl. Anal. , vol.15 , Issue.2 , pp. 155-184
    • Gangbo, W.1    Nguyen, T.2    Tudorascu, A.3
  • 28
    • 67349235555 scopus 로고    scopus 로고
    • Euler-Poisson systems as action-minimizing paths in the Wasserstein space
    • Gangbo W., Nguyen T., Tudorascu A. Euler-Poisson systems as action-minimizing paths in the Wasserstein space. Arch. Ration. Mech. Anal. 2009, 192(3):419-452.
    • (2009) Arch. Ration. Mech. Anal. , vol.192 , Issue.3 , pp. 419-452
    • Gangbo, W.1    Nguyen, T.2    Tudorascu, A.3
  • 29
    • 84859915674 scopus 로고    scopus 로고
    • Homogenization for a class of integral functionals in spaces of probability measures
    • Gangbo W., Tudorascu A. Homogenization for a class of integral functionals in spaces of probability measures. Adv. Math. 2012, 230(3):1124-1174.
    • (2012) Adv. Math. , vol.230 , Issue.3 , pp. 1124-1174
    • Gangbo, W.1    Tudorascu, A.2
  • 30
    • 84886416629 scopus 로고    scopus 로고
    • Optimal transport and large number of particles
    • Gangbo W., Swiech A. Optimal transport and large number of particles. Discrete Contin. Dyn. Syst. 2014, 34(4):1397-1441.
    • (2014) Discrete Contin. Dyn. Syst. , vol.34 , Issue.4 , pp. 1397-1441
    • Gangbo, W.1    Swiech, A.2
  • 31
  • 34
    • 84894613355 scopus 로고    scopus 로고
    • Hamilton-Jacobi equations on metric spaces and transport entropy inequalities
    • in press, preprint, 2011
    • Gozlan N., Roberto C., Samson P. Hamilton-Jacobi equations on metric spaces and transport entropy inequalities. Rev. Mat. Iberoam. 2014, in press, preprint, 2011.
    • (2014) Rev. Mat. Iberoam.
    • Gozlan, N.1    Roberto, C.2    Samson, P.3
  • 37
    • 84895910636 scopus 로고    scopus 로고
    • On metric viscosity solutions for Hamilton-Jacobi equations of evolution type
    • in preparation.
    • A. Nakayasu, On metric viscosity solutions for Hamilton-Jacobi equations of evolution type, in preparation.
    • Nakayasu, A.1
  • 38
    • 0001560970 scopus 로고    scopus 로고
    • The geometry of dissipative evolution equations: The porous medium equation
    • Otto F. The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 2001, 26(1-2):101-174.
    • (2001) Comm. Partial Differential Equations , vol.26 , Issue.1-2 , pp. 101-174
    • Otto, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.