메뉴 건너뛰기




Volumn 10536 LNAI, Issue , 2017, Pages 52-63

CREST - Risk Prediction for Clostridium Difficile Infection Using Multimodal Data Mining

Author keywords

Clostridium difficile; Electronic Health Records; Multimodal data mining; Multivariate time series classification; Risk stratification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLOSTRIDIUM; DATA MINING; DIAGNOSIS; FORECASTING; HEALTH RISKS; HOSPITALS; LEARNING SYSTEMS; RECORDS MANAGEMENT; RISK PERCEPTION; RISKS; TIME SERIES;

EID: 85040233262     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-71273-4_5     Document Type: Conference Paper
Times cited : (9)

References (18)
  • 3
    • 33845312341 scopus 로고    scopus 로고
    • Electroencephalogram (EEG) time series classification: Applications in epilepsy
    • Chaovalitwongse, W.A., Prokopyev, O.A., Pardalos, P.M.: Electroencephalogram (EEG) time series classification: applications in epilepsy. Ann. Oper. Res. 148(1), 227–250 (2006)
    • (2006) Ann. Oper. Res. , vol.148 , Issue.1 , pp. 227-250
    • Chaovalitwongse, W.A.1    Prokopyev, O.A.2    Pardalos, P.M.3
  • 4
    • 77951026738 scopus 로고    scopus 로고
    • Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA)
    • Cohen, S.H., et al.: Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect. Control Hosp. Epidemiol. 31(05), 431–455 (2010)
    • (2010) Infect. Control Hosp. Epidemiol. , vol.31 , Issue.5 , pp. 431-455
    • Cohen, S.H.1
  • 5
    • 63449130403 scopus 로고    scopus 로고
    • Hospital-associated Clostridium difficile infection: Is it necessary to track community-onset disease?
    • Dubberke, E.R., et al.: Hospital-associated Clostridium difficile infection: is it necessary to track community-onset disease? Infect. Control Hosp. Epidemiol. 30(04), 332–337 (2009)
    • (2009) Infect. Control Hosp. Epidemiol. , vol.30 , Issue.4 , pp. 332-337
    • Dubberke, E.R.1
  • 6
    • 79952588451 scopus 로고    scopus 로고
    • Development and validation of a Clostridium difficile infection risk prediction model
    • Dubberke, E.R., et al.: Development and validation of a Clostridium difficile infection risk prediction model. Infect. Control Hosp. Epidemiol. 32(4), 360–366 (2011)
    • (2011) Infect. Control Hosp. Epidemiol. , vol.32 , Issue.4 , pp. 360-366
    • Dubberke, E.R.1
  • 7
    • 84928923377 scopus 로고    scopus 로고
    • Current trends in the epidemiology and outcomes of Clostridium difficile infection
    • Evans, C.T., Safdar, N.: Current trends in the epidemiology and outcomes of Clostridium difficile infection. Clin. Infect. Dis. 60(suppl 2), S66–S71 (2015)
    • (2015) Clin. Infect. Dis. , vol.60 , pp. S66-S71
    • Evans, C.T.1    Safdar, N.2
  • 8
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database. Sci
    • Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
    • (2016) Data , vol.160 , pp. 3
    • Johnson, A.E.1
  • 9
    • 79960555026 scopus 로고    scopus 로고
    • Incidence of and risk factors for community-associated Clostridium difficile infection: A nested case-control study
    • Kuntz, J.L., et al.: Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study. BMC Infect. Dis. 11(1), 194 (2011)
    • (2011) BMC Infect. Dis , vol.11 , Issue.1 , pp. 194
    • Kuntz, J.L.1
  • 10
    • 26844572294 scopus 로고    scopus 로고
    • Spatio-spectral filters for improving the classification of single trial EEG
    • Lemm, S., et al.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)
    • (2005) IEEE Trans. Biomed. Eng. , vol.52 , Issue.9 , pp. 1541-1548
    • Lemm, S.1
  • 11
    • 84923775846 scopus 로고    scopus 로고
    • Burden of Clostridium difficile infection in the United States
    • Lessa, F.C., et al.: Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372(9), 825–834 (2015)
    • (2015) N. Engl. J. Med , vol.372 , Issue.9 , pp. 825-834
    • Lessa, F.C.1
  • 13
    • 0036207031 scopus 로고    scopus 로고
    • Automatic pattern recognition in ECG time series
    • Sternickel, K.: Automatic pattern recognition in ECG time series. Comput. Methods Programs Biomed. 68(2), 109–115 (2002)
    • (2002) Comput. Methods Programs Biomed. , vol.68 , Issue.2 , pp. 109-115
    • Sternickel, K.1
  • 14
    • 59649109714 scopus 로고    scopus 로고
    • Waterlow score to predict patients at risk of developing Clostridium difficile-associated disease
    • Tanner, J., et al.: Waterlow score to predict patients at risk of developing Clostridium difficile-associated disease. J. Hosp. Infect. 71(3), 239–244 (2009)
    • (2009) J. Hosp. Infect. , vol.71 , Issue.3 , pp. 239-244
    • Tanner, J.1
  • 15
    • 84952015331 scopus 로고    scopus 로고
    • Learning data-driven patient risk stratification models for Clostridium difficile
    • Wiens, J., et al.: Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infectious Diseases (2014)
    • (2014) Open Forum Infectious Diseases
    • Wiens, J.1
  • 17
    • 84877753184 scopus 로고    scopus 로고
    • Patient risk stratification for hospital-associated C. Diff as a time-series classification task
    • Wiens, J., Horvitz, E., Guttag, J.V.: Patient risk stratification for hospital-associated C. diff as a time-series classification task. In: Advances in Neural Information Processing Systems, pp. 467–475 (2012)
    • (2012) Advances in Neural Information Processing Systems , pp. 467-475
    • Wiens, J.1    Horvitz, E.2    Guttag, J.V.3
  • 18
    • 85040224585 scopus 로고    scopus 로고
    • Et. Al.: Feature extraction for time series classification using disc. wavelet coefficients. In: Advances in Neural Networks
    • Zhang, H., et. al.: Feature extraction for time series classification using disc. wavelet coefficients. In: Advances in Neural Networks. ISNN 2006, pp. 1394–1399 (2006)
    • (2006) ISNN , vol.2006 , pp. 1394-1399
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.