메뉴 건너뛰기




Volumn 224, Issue , 2018, Pages 139-154

Disaster management in smart cities by forecasting traffic plan using deep learning and GPUs

Author keywords

Convolution neural networks; Deep learning; Disaster management; GPUs; Smart cities

Indexed keywords

DISASTER PREVENTION; DISASTERS; DISTRIBUTED COMPUTER SYSTEMS; FORECASTING; LEARNING ALGORITHMS; LOSSES; PROGRAM PROCESSORS; SMART CITY; VEHICULAR AD HOC NETWORKS;

EID: 85051120110     PISSN: 18678211     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-94180-6_15     Document Type: Conference Paper
Times cited : (51)

References (26)
  • 6
    • 84992364679 scopus 로고    scopus 로고
    • Analysis of eight data mining algorithms for smarter Internet of Things (IoT)
    • Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Procedia Comput. Sci. 98, 437–442 (2016)
    • (2016) Procedia Comput. Sci. , vol.98 , pp. 437-442
    • Alam, F.1    Mehmood, R.2    Katib, I.3    Albeshri, A.4
  • 10
    • 85051136689 scopus 로고    scopus 로고
    • SUMO | Simulation of Urban MObility. http://sumo.dlr.de/wiki/Main_Page
  • 11
    • 85021843178 scopus 로고    scopus 로고
    • Enabling next generation logistics and planning for smarter societies
    • Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017)
    • (2017) Procedia Comput. Sci. , vol.109 , pp. 1122-1127
    • Suma, S.1    Mehmood, R.2    Albugami, N.3    Katib, I.4    Albeshri, A.5
  • 12
    • 84979825582 scopus 로고    scopus 로고
    • Autonomic transport management systems—enabler for smart cities, personalized medicine, participation and industry grid/industry 4.0
    • Sładkowski, A., Pamuła, W. (eds.), Springer, Cham
    • Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic transport management systems—enabler for smart cities, personalized medicine, participation and industry grid/industry 4.0. In: Sładkowski, A., Pamuła, W. (eds.) Intelligent Transportation Systems – Problems and Perspectives. SSDC, vol. 32, pp. 3–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19150-8_1
    • (2016) Intelligent Transportation Systems – Problems and Perspectives. SSDC , vol.32 , pp. 3-35
    • Schlingensiepen, J.1    Nemtanu, F.2    Mehmood, R.3    McCluskey, L.4
  • 13
    • 85028981019 scopus 로고    scopus 로고
    • Data fusion and IoT for smart ubiquitous environments: A survey
    • Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)
    • (2017) IEEE Access , vol.5 , pp. 9533-9554
    • Alam, F.1    Mehmood, R.2    Katib, I.3    Albogami, N.N.4    Albeshri, A.5
  • 14
    • 85017655539 scopus 로고    scopus 로고
    • UTiLearn: A personalised ubiquitous teaching and learning system for smart societies
    • Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5, 2615–2635 (2017)
    • (2017) IEEE Access , vol.5 , pp. 2615-2635
    • Mehmood, R.1    Alam, F.2    Albogami, N.N.3    Katib, I.4    Albeshri, A.5    Altowaijri, S.6
  • 15
    • 84979820330 scopus 로고    scopus 로고
    • Greener and smarter phones for future cities: Characterizing the impact of GPS signal strength on power consumption
    • Tawalbeh, L., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for future cities: characterizing the impact of GPS signal strength on power consumption. IEEE Access 4, 858–868 (2016)
    • (2016) IEEE Access , vol.4 , pp. 858-868
    • Tawalbeh, L.1    Basalamah, A.2    Mehmood, R.3    Tawalbeh, H.4
  • 20
    • 84954179437 scopus 로고    scopus 로고
    • Parallel transportation management and control system and its applications in building smart cities
    • Zhu, F., Li, Z., Chen, S., Xiong, G.: Parallel transportation management and control system and its applications in building smart cities. IEEE Trans. Intell. Transp. Syst. 17, 1576–1585 (2016)
    • (2016) IEEE Trans. Intell. Transp. Syst. , vol.17 , pp. 1576-1585
    • Zhu, F.1    Li, Z.2    Chen, S.3    Xiong, G.4
  • 21
    • 85027926799 scopus 로고    scopus 로고
    • Traffic flow prediction with big data: A deep learning approach
    • Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.2 , pp. 865-873
    • Lv, Y.1    Duan, Y.2    Kang, W.3    Li, Z.4    Wang, F.-Y.5
  • 22
  • 25
    • 84925014499 scopus 로고    scopus 로고
    • Large-scale transportation network congestion evolution prediction using deep learning theory
    • Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE 10, e0119044 (2015)
    • (2015) Plos ONE , vol.10
    • Ma, X.1    Yu, H.2    Wang, Y.3    Wang, Y.4
  • 26
    • 85051142703 scopus 로고    scopus 로고
    • Keras Documentation. https://keras.io/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.