메뉴 건너뛰기




Volumn 2018-January, Issue , 2017, Pages 43-48

A novel density peak clustering algorithm based on squared residual error

Author keywords

clustering; density peak clustering; low density data points; squared residual error

Indexed keywords

ITERATIVE METHODS;

EID: 85050590093     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SPAC.2017.8304248     Document Type: Conference Paper
Times cited : (14)

References (22)
  • 1
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 9, pp. 2138-2150, 2014.
    • (2014) IEEE Transactions on Knowledge and Data Engineering , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 2
    • 84863297743 scopus 로고    scopus 로고
    • A batch rival penalized expectation-maximization algorithm for Gaussian mixture clustering with automatic model selection
    • J. Wen, D. Zhang, Y. Cheung, H. Liu, and X. You, "A batch rival penalized expectation-maximization algorithm for gaussian mixture clustering with automatic model selection." Computational and Mathematical Methods in Medicine, vol. 2012, p. 425730, 2012.
    • (2012) Computational and Mathematical Methods in Medicine , vol.2012 , pp. 425730
    • Wen, J.1    Zhang, D.2    Cheung, Y.3    Liu, H.4    You, X.5
  • 3
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • C. Xu and Z. Su, "Identification of cell types from single-cell transcriptomes using a novel clustering method," Bioinformatics, vol. 31, no. 12, pp. 1974-1980, 2015.
    • (2015) Bioinformatics , vol.31 , Issue.12 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 4
    • 84901623406 scopus 로고    scopus 로고
    • Ovarian cancer diagnosis using a hybrid intelligent system with simple yet convincing rules
    • D. Wang, C. Quek, and G. S. Ng, "Ovarian cancer diagnosis using a hybrid intelligent system with simple yet convincing rules," Applied Soft Computing, vol. 20, pp. 25-39, 2014.
    • (2014) Applied Soft Computing , vol.20 , pp. 25-39
    • Wang, D.1    Quek, C.2    Ng, G.S.3
  • 5
    • 84900799213 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for financial risk analysis using MCDM methods
    • G. Kou, Y. Peng, and G. Wang, "Evaluation of clustering algorithms for financial risk analysis using MCDM methods," Information Sciences, vol. 275, pp. 1-12, 2014.
    • (2014) Information Sciences , vol.275 , pp. 1-12
    • Kou, G.1    Peng, Y.2    Wang, G.3
  • 6
    • 84973444055 scopus 로고    scopus 로고
    • Bank failure prediction using an accurate and interpretable neural fuzzy inference system
    • D. Wang, C. Quek, and G. S. Ng, "Bank failure prediction using an accurate and interpretable neural fuzzy inference system," AI Communications, vol. 29, no. 4, pp. 477-495, 2016.
    • (2016) AI Communications , vol.29 , Issue.4 , pp. 477-495
    • Wang, D.1    Quek, C.2    Ng, G.S.3
  • 11
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, no. 5814, pp. 972-976, 2007.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 13
    • 84986550254 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks via heat diffusion
    • R. Mehmood, G. Zhang, R. Bie, H. Dawood, and H. Ahmad, "Clustering by fast search and find of density peaks via heat diffusion," Neurocomputing, vol. 208, pp. 210-217, 2016.
    • (2016) Neurocomputing , vol.208 , pp. 210-217
    • Mehmood, R.1    Zhang, G.2    Bie, R.3    Dawood, H.4    Ahmad, H.5
  • 14
    • 80054122982 scopus 로고    scopus 로고
    • Model-based multidimensional clustering of categorical data
    • T. Chen, N. L. Zhang, T. Liu, K. M. Poon, and Y. Wang, "Model-based multidimensional clustering of categorical data," Artificial Intelligence, vol. 176, no. 1, pp. 2246-2269, 2012.
    • (2012) Artificial Intelligence , vol.176 , Issue.1 , pp. 2246-2269
    • Chen, T.1    Zhang, N.L.2    Liu, T.3    Poon, K.M.4    Wang, Y.5
  • 17
    • 84903289127 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks
    • A. Rodriguez and A. Laio, "Clustering by fast search and find of density peaks," Science, vol. 344, no. 6191, pp. 1492-1496, 2014.
    • (2014) Science , vol.344 , Issue.6191 , pp. 1492-1496
    • Rodriguez, A.1    Laio, A.2
  • 19
    • 84955755127 scopus 로고    scopus 로고
    • An improved density peaks-based clustering method for social circle discovery in social networks
    • M. Wang, W. Zuo, and Y. Wang, "An improved density peaks-based clustering method for social circle discovery in social networks," Neurocomputing, vol. 179, pp. 219-227, 2016.
    • (2016) Neurocomputing , vol.179 , pp. 219-227
    • Wang, M.1    Zuo, W.2    Wang, Y.3
  • 20
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: A review," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 21
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • H. Chang and D.-Y. Yeung, "Robust path-based spectral clustering," Pattern Recognition, vol. 41, no. 1, pp. 191-203, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 191-203
    • Chang, H.1    Yeung, D.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.