-
1
-
-
85049806868
-
Bezgradiyentnyye dvukhtochechnyye metody resheniya zadach stokhasticheskoy negladkoy vypukloy optimizatsii pri nalichii malykh shumov ne sluchaynoy prirody
-
(Russian).
-
Bayandina A. S., Gasnikov A. V., Lagunovskaya A. A. Bezgradiyentnyye dvukhtochechnyye metody resheniya zadach stokhasticheskoy negladkoy vypukloy optimizatsii pri nalichii malykh shumov ne sluchaynoy prirody [Gradient-less two-point methods for solving stochastic nonsmooth convex optimization problems in the presence of small non-random noises] // Automatics and telemechanics. - 2018. - URL: https://arxiv.org/ftp/arxiv/papers/1701/1701.03821.pdf (in Russian).
-
(2018)
Automatics and Telemechanics
-
-
Bayandina, A.S.1
Gasnikov, A.V.2
Lagunovskaya, A.A.3
-
3
-
-
85049770031
-
Uskorennyye spuski po sluchaynomu napravleniyu i bezgradiyentnyye metody s neyevklidovoy proks-strukturoy
-
(Russian).
-
Vorontsova E. A., Gasnikov A. V., Gorbunov E. A. Uskorennyye spuski po sluchaynomu napravleniyu i bezgradiyentnyye metody s neyevklidovoy proks-strukturoy [Accelerated descents in a random direction and gradientless methods with non-euclidean prox-structure] // Automatics and telemechanics. - 2018. - URL: https://arxiv.org/pdf/1710.00162.pdf (in Russian).
-
(2018)
Automatics and Telemechanics
-
-
Vorontsova, E.A.1
Gasnikov, A.V.2
Gorbunov, E.A.3
-
4
-
-
85049803579
-
Effektivnyye chislennyye metody poiska ravnovesiya v bol'shikh transportnykh setyakh: dissertatsiya na soiskaniye uchenoy stepeni d. f.-m. n. po spetsial'nosti 05.13.18
-
Moscow: MFTI (in Russian).
-
Gasnikov A. V. Effektivnyye chislennyye metody poiska ravnovesiya v bol'shikh transportnykh setyakh: dissertatsiya na soiskaniye uchenoy stepeni d. f.-m. n. po spetsial'nosti 05.13.18 [Effective numerical methods for finding equilibrium in large transport networks: thesis for PhD on the specialty 05.13.18] - Matematicheskoye modelirovaniye, chislennyye metody, kompleksy programm [Mathematical modeling, numerical methods, program complexes]. - Moscow: MFTI, 2016. - 487 p. (in Russian).
-
(2016)
Matematicheskoye Modelirovaniye, Chislennyye Metody, Kompleksy Programm [Mathematical Modeling, Numerical Methods, Program Complexes]
, pp. 487
-
-
Gasnikov, A.V.1
-
13
-
-
70350137854
-
K voprosu ob algoritmakh priblizhennogo vychisleniya minimuma vypukloy funktsii po yeye znacheniyam
-
(in Russian).
-
Protasov V. Yu. K voprosu ob algoritmakh priblizhennogo vychisleniya minimuma vypukloy funktsii po yeye znacheniyam [On the question of algorithms for the approximate calculation of the minimum of a convex function from its values] // Mat. zametki [Math. notes]. - 1996. - Vol. 59, No. 1. - P. 95-102. (in Russian).
-
(1996)
Mat. Zametki [Math. Notes]
, vol.59
, Issue.1
, pp. 95-102
-
-
Protasov, V.Yu.1
-
15
-
-
85024401503
-
Finding approximate local minima faster than gradient descent
-
Agarwal N., Allen-Zhu Z., Bullins B., Hazan E., Ma T. Finding approximate local minima faster than gradient descent // In Proceedings of the Forty-Ninth Annual ACM Symposium on the Theory of Computing, 2017.
-
(2017)
Proceedings of the Forty-Ninth Annual ACM Symposium on the Theory of Computing
-
-
Agarwal, N.1
Allen-Zhu, Z.2
Bullins, B.3
Hazan, E.4
Ma, T.5
-
16
-
-
85049779919
-
Oracle complexity of second-order methods for smooth convex optimization
-
Arjevani Y., Shamir O., Shiff R. Oracle complexity of second-order methods for smooth convex optimization // e-print, 2017. - URL: https://arxiv.org/pdf/1705.07260.pdf
-
(2017)
E-print
-
-
Arjevani, Y.1
Shamir, O.2
Shiff, R.3
-
17
-
-
84893334588
-
Estimate sequence methods: Extensions and approximations
-
Baes M. Estimate sequence methods: extensions and approximations // e-print, 2009. - URL: http://www.optimization-online.org/DB-FILE/2009/08/2372.pdf
-
(2009)
E-print
-
-
Baes, M.1
-
18
-
-
84989161316
-
Automatic differentiation in machine learning: A survey
-
Baydin A. G., Pearlmutter B. A., Radul A. A., Siskand J. M. Automatic differentiation in machine learning: a survey // e-print, 2015. - URL: https://arxiv.org/pdf/1502.05767.pdf
-
(2015)
E-print
-
-
Baydin, A.G.1
Pearlmutter, B.A.2
Radul, A.A.3
Siskand, J.M.4
-
19
-
-
84983143287
-
Convex optimization: Algorithms and complexity
-
Bubeck S. Convex optimization: algorithms and complexity // In Foundations and Trends in Machine Learning. - 2015. - Vol. 8, No. 3-4. - P. 231-357.
-
(2015)
Foundations and Trends in Machine Learning.
, vol.8
, Issue.3-4
, pp. 231-357
-
-
Bubeck, S.1
-
20
-
-
85024396637
-
Accelerated methods for non-convex optimization
-
Carmon Y., Duchi J. C., Hinder O., Sidford A. Accelerated methods for non-convex optimization // e-print, 2017. - URL: https://arxiv.org/pdf/1611.00756.pdf
-
(2017)
E-print
-
-
Carmon, Y.1
Duchi, J.C.2
Hinder, O.3
Sidford, A.4
-
21
-
-
85049787492
-
Randomized similar triangles method: A unifying framework for accelerated randomized optimization methods (Coordinate descent directional search derivative-free method)
-
Dvurechensky P., Gasnikov A., Tiurin A. Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods (Coordinate Descent, Directional Search, Derivative-Free Method) // SIAM J. Optim. - 2017 (Submitted). - URL: https://arxiv.org/pdf/1707.08486.pdf
-
(2017)
SIAM J. Optim.
-
-
Dvurechensky, P.1
Gasnikov, A.2
Tiurin, A.3
-
22
-
-
85049807076
-
Second-order methods with cubic regularization under inexact information
-
Ghadimi S., Liu H., Zhang T. Second-order methods with cubic regularization under inexact information // e-print, 2017. - URL: https://arxiv.org/pdf/1710.05782.pdf
-
(2017)
E-print
-
-
Ghadimi, S.1
Liu, H.2
Zhang, T.3
-
23
-
-
85021161662
-
Regularized Newton methods for minimazing functions with Hölder continuous Hessian
-
Grapiglia G. N., Nesterov Yu. Regularized Newton methods for minimazing functions with Hölder continuous Hessian // SIAM J. Optim. - 2017. - Vol. 27 (1). - P. 478-506.
-
(2017)
SIAM J. Optim.
, vol.27
, Issue.1
, pp. 478-506
-
-
Grapiglia, G.N.1
Yu, N.2
-
24
-
-
85049774978
-
A faster cutting plane method and its implications for combinatorial and convex optimization
-
Lee Y.-T., Sidford A., Wong S. C.-W. A faster cutting plane method and its implications for combinatorial and convex optimization // e-print, 2015. - URL: https://arxiv.org/pdf/1508.04874.pdf
-
(2015)
E-print
-
-
Lee, Y.-T.1
Sidford, A.2
Wong, S.C.-W.3
-
25
-
-
84880731606
-
An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods
-
Monteiro R., Svaiter B. An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods // SIAM Journal on Optimization. - 2013. - Vol. 23 (2). - P. 1092-1125.
-
(2013)
SIAM Journal on Optimization
, vol.23
, Issue.2
, pp. 1092-1125
-
-
Monteiro, R.1
Svaiter, B.2
-
27
-
-
34547474583
-
Accelerating the cubic regularization of Newton's method on convex problems
-
Nesterov Yu. Accelerating the cubic regularization of Newton's method on convex problems // Math. Prog., Ser. A. - 2008. - Vol. 112. - P. 159-181.
-
(2008)
Math. Prog., Ser. A.
, vol.112
, pp. 159-181
-
-
Yu, N.1
-
28
-
-
85065412912
-
Implementable tensor methods in unconstrained convex optmization
-
Nesterov Yu. Implementable tensor methods in unconstrained convex optmization // CORE Discussion Papers 2018005. - 2018. - URL: https://ideas.repec.org/p/cor/louvco/2018005.html
-
(2018)
CORE Discussion Papers 2018005
-
-
Yu, N.1
-
29
-
-
85049799866
-
Minimizing functions with bounded variation of subgradients
-
Nesterov Yu. Minimizing functions with bounded variation of subgradients // CORE Discussion Papers. 2005/79. - 2005. - 13 p. - URL: http://webdoc.sub.gwdg.de/ebook/serien/e/CORE/ dp2005-79.pdf
-
(2005)
CORE Discussion Papers. 2005/79
, pp. 13
-
-
Yu, N.1
-
30
-
-
33646730150
-
Cubic regularization of Newton method and its global performance
-
Nesterov Yu., Polyak P. Cubic regularization of Newton method and its global performance // Math. Program. Ser. A. - 2006. - Vol. 108. - P. 177-205.
-
(2006)
Math. Program. Ser. A.
, vol.108
, pp. 177-205
-
-
Nesterov, Yu.1
Polyak, P.2
|