메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 3085-3094

Unbiased estimates for linear regression via volume sampling

Author keywords

[No Author keywords available]

Indexed keywords

ESTIMATION; LEAST SQUARES APPROXIMATIONS; SURFACE RECONSTRUCTION;

EID: 85047018067     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (37)

References (19)
  • 2
    • 38249016652 scopus 로고
    • A geometric property of the Least squares solution of linear equations
    • Aharon Ben-Tal and Marc Teboulle. A geometric property of the least squares solution of linear equations. Linear Algebra and its Applications, 139:165-170, 1990.
    • (1990) Linear Algebra and its Applications , vol.139 , pp. 165-170
    • Ben-Tal, A.1    Teboulle, M.2
  • 3
    • 84887368157 scopus 로고    scopus 로고
    • Rich coresets for constrained linear regression
    • Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Rich coresets for constrained linear regression. CoRR, abs/1202.3505, 2012.
    • (2012) CoRR
    • Boutsidis, C.1    Drineas, P.2    Magdon-Ismail, M.3
  • 8
    • 84873435224 scopus 로고    scopus 로고
    • Fast approximation of matrix coherence and statistical leverage
    • December
    • Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res., 13(1):3475-3506, December 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 3475-3506
    • Drineas, P.1    Magdon-Ismail, M.2    Mahoney, M.W.3    Woodruff, D.P.4
  • 12
    • 85041763875 scopus 로고    scopus 로고
    • Linear regression without correspondence
    • Daniel Hsu, Kevin Shi, and Xiaorui Sun. Linear regression without correspondence. CoRR, abs/1705.07048, 2017.
    • (2017) CoRR
    • Hsu, D.1    Shi, K.2    Sun, X.3
  • 17
    • 84856463292 scopus 로고    scopus 로고
    • Randomized algorithms for matrices and data
    • February
    • Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends Mach. Learn., 3(2):123-224, February 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.2 , pp. 123-224
    • Mahoney, M.W.1
  • 18
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • Washington, DC, USA IEEE Computer Society
    • Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS'06, pages 143-152, Washington, DC, USA, 2006. IEEE Computer Society.
    • (2006) Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS'06 , pp. 143-152
    • Sarlos, T.1
  • 19
    • 67349146515 scopus 로고    scopus 로고
    • Pool-based active learning in approximate linear regression
    • June
    • Masashi Sugiyama and Shinichi Nakajima. Pool-based active learning in approximate linear regression. Mach. Learn., 75(3):249-274, June 2009.
    • (2009) Mach. Learn. , vol.75 , Issue.3 , pp. 249-274
    • Sugiyama, M.1    Nakajima, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.