-
2
-
-
38249016652
-
A geometric property of the Least squares solution of linear equations
-
Aharon Ben-Tal and Marc Teboulle. A geometric property of the least squares solution of linear equations. Linear Algebra and its Applications, 139:165-170, 1990.
-
(1990)
Linear Algebra and its Applications
, vol.139
, pp. 165-170
-
-
Ben-Tal, A.1
Teboulle, M.2
-
3
-
-
84887368157
-
Rich coresets for constrained linear regression
-
Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Rich coresets for constrained linear regression. CoRR, abs/1202.3505, 2012.
-
(2012)
CoRR
-
-
Boutsidis, C.1
Drineas, P.2
Magdon-Ismail, M.3
-
4
-
-
84926078662
-
-
Cambridge University Press, New York, NY, USA
-
Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University Press, New York, NY, USA, 2006.
-
(2006)
Prediction, Learning, and Games
-
-
Cesa-Bianchi, N.1
Lugosi, G.2
-
5
-
-
84879805132
-
Low rank approximation and regression in input sparsity time
-
New York, NY, USA ACM
-
Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC'13, pages 81-90, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC'13
, pp. 81-90
-
-
Clarkson, K.L.1
Woodruff, D.P.2
-
6
-
-
78751516882
-
Efficient volume sampling for row/column subset selection
-
Washington, DC, USA IEEE Computer Society
-
Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset selection. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS'10, pages 329-338, Washington, DC, USA, 2010. IEEE Computer Society.
-
(2010)
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS'10
, pp. 329-338
-
-
Deshpande, A.1
Rademacher, L.2
-
7
-
-
33244455701
-
Matrix approximation and projective clustering via volume sampling
-
Philadelphia, PA, USA Society for Industrial and Applied Mathematics
-
Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective clustering via volume sampling. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA'06, pages 1117-1126, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics.
-
(2006)
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA'06
, pp. 1117-1126
-
-
Deshpande, A.1
Rademacher, L.2
Vempala, S.3
Wang, G.4
-
8
-
-
84873435224
-
Fast approximation of matrix coherence and statistical leverage
-
December
-
Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res., 13(1):3475-3506, December 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 3475-3506
-
-
Drineas, P.1
Magdon-Ismail, M.2
Mahoney, M.W.3
Woodruff, D.P.4
-
10
-
-
84991214776
-
Bayesian low-rank determinantal point processes
-
New York, NY, USA ACM
-
Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Bayesian low-rank determinantal point processes. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys'16, pages 349-356, New York, NY, USA, 2016. ACM.
-
(2016)
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys'16
, pp. 349-356
-
-
Gartrell, M.1
Paquet, U.2
Koenigstein, N.3
-
11
-
-
84860200361
-
Optimal column-based low-rank matrix reconstruction
-
Philadelphia, PA, USA Society for Industrial and Applied Mathematics
-
Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix reconstruction. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'12, pages 1207-1214, Philadelphia, PA, USA, 2012. Society for Industrial and Applied Mathematics.
-
(2012)
Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'12
, pp. 1207-1214
-
-
Guruswami, V.1
Sinop, A.K.2
-
12
-
-
85041763875
-
Linear regression without correspondence
-
Daniel Hsu, Kevin Shi, and Xiaorui Sun. Linear regression without correspondence. CoRR, abs/1705.07048, 2017.
-
(2017)
CoRR
-
-
Hsu, D.1
Shi, K.2
Sun, X.3
-
17
-
-
84856463292
-
Randomized algorithms for matrices and data
-
February
-
Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends Mach. Learn., 3(2):123-224, February 2011.
-
(2011)
Found. Trends Mach. Learn.
, vol.3
, Issue.2
, pp. 123-224
-
-
Mahoney, M.W.1
-
18
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
Washington, DC, USA IEEE Computer Society
-
Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS'06, pages 143-152, Washington, DC, USA, 2006. IEEE Computer Society.
-
(2006)
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS'06
, pp. 143-152
-
-
Sarlos, T.1
-
19
-
-
67349146515
-
Pool-based active learning in approximate linear regression
-
June
-
Masashi Sugiyama and Shinichi Nakajima. Pool-based active learning in approximate linear regression. Mach. Learn., 75(3):249-274, June 2009.
-
(2009)
Mach. Learn.
, vol.75
, Issue.3
, pp. 249-274
-
-
Sugiyama, M.1
Nakajima, S.2
|