-
1
-
-
84971463350
-
Deep speech 2: End-to-end speech recognition in English and Mandarin
-
Amodei, Dario, Anubhai, Rishita, Battenberg, Eric, Case, Carl, Casper, Jared, Catanzaro, Bryan, Chen, Jingdong, Chrzanowski, Mike, Coates, Adam, Diamos, Greg, et al. Deep speech 2: End-to-end speech recognition in english and mandarin. In 33rd International Conference on Machine Learning, 2016.
-
(2016)
33rd International Conference on Machine Learning
-
-
Amodei, D.1
Anubhai, R.2
Battenberg, E.3
Case, C.4
Casper, J.5
Catanzaro, B.6
Chen, J.7
Chrzanowski, M.8
Coates, A.9
Diamos, G.10
-
3
-
-
0142166851
-
A neural probabilistic language model
-
Bengio, Yoshua, Ducharme, Réjean, Vincent, Pascal, and Jauvin, Christian. A neural probabilistic language model. Journal of machine learning research, 3(Feb): 1137-1155, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.FEB
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
6
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
IEEE
-
Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Geoffrey. Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pp. 6645-6649. IEEE, 2013.
-
(2013)
Acoustics, Speech and Signal Processing (icassp), 2013 Ieee International Conference On
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
7
-
-
85019265504
-
Dual learning for machine translation
-
He, Di, Xia, Yingce, Qin, Tao, Wang, Liwei, Yu, Nenghai, Liu, Tie-Yan, and Ma, Wei-Ying. Dual learning for machine translation. In Advances In Neural Information Processing Systems, pp. 820-828, 2016a.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 820-828
-
-
He, D.1
Xia, Y.2
Qin, T.3
Wang, L.4
Yu, N.5
Liu, T.-Y.6
Ma, W.-Y.7
-
8
-
-
84986274465
-
Deep residual learning for image recognition
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016b.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84990050094
-
Identity mappings in deep residual networks
-
Springer
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Identity mappings in deep residual networks. In European Conference on Computer Vision, pp. 630-645. Springer, 2016c.
-
(2016)
European Conference on Computer Vision
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
0003074296
-
Support vector machines
-
Hearst, Marti A., Dumais, Susan T, Osuna, Edgar, Platt, John, and Scholkopf, Bernhard. Support vector machines. IEEE Intelligent Systems and their Applications, 13(4): 18-28, 1998.
-
(1998)
IEEE Intelligent Systems and their Applications
, vol.13
, Issue.4
, pp. 18-28
-
-
Hearst, M.A.1
Dumais, S.T.2
Osuna, E.3
Platt, J.4
Scholkopf, B.5
-
11
-
-
85048545743
-
-
Imdb dataset
-
IMDB. Imdb dataset. http://ai.stanford.edu/amaas/data/sentiment/, 2011.
-
(2011)
IMDB
-
-
-
12
-
-
84943744936
-
On using very large target vocabulary for neural machine translation
-
Jean, Sébastien, Cho, Kyunghyun, Memisevic, Roland, and Bengio, Yoshua. On using very large target vocabulary for neural machine translation. In ACL, 2015.
-
(2015)
ACL
-
-
Jean, S.1
Cho, K.2
Memisevic, R.3
Bengio, Y.4
-
15
-
-
84859023447
-
Learning word vectors for sentiment analysis
-
Association for Computational Linguistics
-
Maas, Andrew L, Daly, Raymond E, Pham, Peter T, Huang, Dan, Ng, Andrew Y, and Potts, Christopher. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 142-150. Association for Computational Linguistics, 2011.
-
(2011)
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
, vol.1
, pp. 142-150
-
-
Maas, A.L.1
Daly, R.E.2
Pham, P.T.3
Huang, D.4
Ng, A.Y.5
Potts, C.6
-
16
-
-
80051627816
-
Recurrent neural network based language model
-
Mikolov, Tomas, Karafiát, Martin, Bürget, Lukas, Cernocky, Jan, and Khudanpur, Sanjeev. Recurrent neural network based language model. In Interspeech, Volume 2, pp. 3, 2010.
-
(2010)
Interspeech
, vol.2
, pp. 3
-
-
Mikolov, T.1
Karafiát, M.2
Bürget, L.3
Cernocky, J.4
Khudanpur, S.5
-
17
-
-
85048554359
-
-
multi-bleu.pl
-
Multi bleu, multi-bleu.pl. https://github.com/moses-smt/mosesdecoder/blob/master/'scripts/'generic/multi-bleu.perl, 2015.
-
(2015)
Multi Bleu
-
-
-
18
-
-
85011070895
-
-
arXiv preprint
-
Oord, Aaron van den, Dieleman, Sander, Zen, Heiga, Simonyan, Karen, Vinyals, Oriol, Graves, Alex, Kalchbrenner, Nal, Senior, Andrew, and Kavukcuoglu, Koray. Wavenet: A generative model for raw audio. arXiv preprint arXiv: 1609.03499, 2016.
-
(2016)
Wavenet: A Generative Model for Raw Audio
-
-
Van Den Oord, A.1
Dieleman, S.2
Zen, H.3
Simonyan, K.4
Vinyals, O.5
Graves, A.6
Kalchbrenner, N.7
Senior, A.8
Kavukcuoglu, K.9
-
19
-
-
85133336275
-
Bleu: A method for automatic evaluation of machine translation
-
Association for Computational Linguistics
-
Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu, Wei-Jing. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pp. 311-318. Association for Computational Linguistics, 2002.
-
(2002)
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics
, pp. 311-318
-
-
Papineni, K.1
Roukos, S.2
Ward, T.3
Zhu, W.-J.4
-
20
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the difficulty of training recurrent neural networks. ICML(3), 28: 1310-1318, 2013.
-
(2013)
ICML(3)
, vol.28
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
21
-
-
85062628561
-
Pixelcnn++: A pixelcnn implementation with discretized logistic mixture likelihood and other modifications
-
Salimans, Tim, Karpathy, Andrej, Chen, Xi, P. Kingma, Diederik, and Bulatov, Yaroslav. Pixelcnn++: A pixelcnn implementation with discretized logistic mixture likelihood and other modifications. In International Conference on Learning Representations, 2017.
-
(2017)
International Conference on Learning Representations
-
-
Salimans, T.1
Karpathy, A.2
Chen, X.3
Kingma, D.P.4
Bulatov, Y.5
-
22
-
-
85011835490
-
Minimum risk training for neural machine translation
-
Shen, Shiqi, Cheng, Yong, He, Zhongjun, He, Wei, Wu, Hua, Sun, Maosong, and Liu, Yang. Minimum risk training for neural machine translation. ACL, 2016.
-
(2016)
ACL
-
-
Shen, S.1
Cheng, Y.2
He, Z.3
He, W.4
Wu, H.5
Sun, M.6
Liu, Y.7
-
23
-
-
84878402147
-
Lstm neural networks for language modeling
-
Sundermeyer, Martin, Schlüter, Ralf, and Ney, Hermann. Lstm neural networks for language modeling. In Interspeech, pp. 194-197, 2012.
-
(2012)
Interspeech
, pp. 194-197
-
-
Sundermeyer, M.1
Schlüter, R.2
Ney, H.3
-
26
-
-
85018873682
-
Conditional image generation with pixelcnn decoders
-
Van den Oord, Aaron, Kalchbrenner, Nal, Espeholt, Lasse, Vinyals, Oriol, Graves, Alex, et al. Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems, pp. 4790-4798, 2016a.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 4790-4798
-
-
Van Den Oord, A.1
Kalchbrenner, N.2
Espeholt, L.3
Vinyals, O.4
Graves, A.5
-
29
-
-
85018271332
-
-
arXiv preprint
-
Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V, Norouzi, Mohammad, Macherey, Wolfgang, Krikun, Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, et al. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv: 1609.08144, 2016.
-
(2016)
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
-
-
Wu, Y.1
Schuster, M.2
Chen, Z.3
Le, Q.V.4
Norouzi, M.5
Macherey, W.6
Krikun, M.7
Cao, Y.8
Gao, Q.9
Macherey, K.10
-
30
-
-
85031934799
-
Dual inference for machine learning
-
Xia, Yingce, Bian, Jiang, Qin, Tao, Yu, Nenghai, and Liu, Tie-Yan. Dual inference for machine learning. In The 26th International Joint Conference on Artificial Intelligence, 2017.
-
(2017)
The 26th International Joint Conference on Artificial Intelligence
-
-
Xia, Y.1
Bian, J.2
Qin, T.3
Yu, N.4
Liu, T.-Y.5
|