메뉴 건너뛰기




Volumn 13, Issue 5, 2018, Pages

Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging

Author keywords

[No Author keywords available]

Indexed keywords

AIRCRAFT; ARTICLE; COLOR; CONTROLLED STUDY; CULTIVAR; DISEASE SEVERITY; MEASUREMENT ACCURACY; NONHUMAN; RICE; SHEATH BLIGHT; UNMANNED AERIAL VEHICLE; VEGETATION; ENVIRONMENTAL MONITORING; GROWTH, DEVELOPMENT AND AGING; IMAGE PROCESSING; IMMUNOLOGY; MICROBIOLOGY; ORYZA; PLANT DISEASE; PREVENTION AND CONTROL; PROCEDURES; REMOTE SENSING;

EID: 85046884260     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0187470     Document Type: Article
Times cited : (106)

References (30)
  • 1
    • 0003586107 scopus 로고    scopus 로고
    • RPH. Rice Production Handbook. 2014; Available from: https://beaumont.tamu.edu/eLibrary/RiceResource/Rice_Production_Handbook.pdf.
    • (2014) Rice Production Handbook
  • 4
    • 84878552883 scopus 로고    scopus 로고
    • Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies
    • PMID: 23578473
    • Yang WN, Duan LF, Chen GX, Xiong LZ, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol. 2013; 16(2):180–187. https://doi.org/10.1016/j.pbi.2013.03.005 PMID: 23578473
    • (2013) Curr Opin Plant Biol , vol.16 , Issue.2 , pp. 180-187
    • Yang, W.N.1    Duan, L.F.2    Chen, G.X.3    Xiong, L.Z.4    Liu, Q.5
  • 5
    • 84896123655 scopus 로고    scopus 로고
    • Phenotyping and beyond: Modelling the relationships between traits
    • PMID: 24637194
    • Granier C, Vile D. Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol. 2014; 18:96–102. https://doi.org/10.1016/j.pbi.2014.02.009 PMID: 24637194
    • (2014) Curr Opin Plant Biol , vol.18 , pp. 96-102
    • Granier, C.1    Vile, D.2
  • 6
    • 84893351703 scopus 로고    scopus 로고
    • Detection by imaging sensors–Parallels and specific demands for precision agriculture and plant phenotyping
    • Mahlein AK. Detection by imaging sensors–Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016; 1–11.
    • (2016) Plant Dis , pp. 1-11
    • Mahlein, A.K.1
  • 7
    • 84928600188 scopus 로고    scopus 로고
    • Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions
    • Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, et al. Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods. 2015; 11(1):28.
    • (2015) Plant Methods , vol.11 , Issue.1 , pp. 28
    • Kuska, M.1    Wahabzada, M.2    Leucker, M.3    Dehne, H.W.4    Kersting, K.5    Oerke, E.C.6
  • 8
    • 85126730728 scopus 로고    scopus 로고
    • Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. Infections on wheat
    • Bauriegel E, Herppich W. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. infections on wheat. Agriculture. 2014; 4: 32–57.
    • (2014) Agriculture , vol.4 , pp. 32-57
    • Bauriegel, E.1    Herppich, W.2
  • 9
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • Mulla DJ. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst Eng. 2013; 114(4): 358–371.
    • (2013) Biosyst Eng , vol.114 , Issue.4 , pp. 358-371
    • Mulla, D.J.1
  • 10
    • 84912050810 scopus 로고    scopus 로고
    • Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing
    • Ballesteros R, Ortega JF, Hernandez D, Moreno MA. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis Agric. 2014; 15(5): 79–592.
    • (2014) Precis Agric , vol.15 , Issue.5 , pp. 79-592
    • Ballesteros, R.1    Ortega, J.F.2    Hernandez, D.3    Moreno, M.A.4
  • 11
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
    • PMID: 24146963
    • Peña JM, Torres-Sánchez J, Castro AID, Kelly M, López-Granados F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE. 2013; 8(10): e77151. https://doi.org/10.1371/journal.pone.0077151 PMID: 24146963
    • (2013) PLoS ONE , vol.8 , Issue.10 , pp. e77151
    • Peña, J.M.1    Torres-Sánchez, J.2    Castro, A.I.D.3    Kelly, M.4    López-Granados, F.5
  • 12
    • 85046849306 scopus 로고    scopus 로고
    • Evaluation of rice cultivars and elite lines for resistance to diseases in Texas
    • Zhou XG, Liu G, Tabien RE, Vawter J. Evaluation of rice cultivars and elite lines for resistance to diseases in Texas. PDMR. 2010; 5:FC052: 1–2.
    • (2010) PDMR , vol.5
    • Zhou, X.G.1    Liu, G.2    Tabien, R.E.3    Vawter, J.4
  • 13
    • 85046845991 scopus 로고    scopus 로고
    • https://www.micasense.com/rededge/.
  • 14
    • 85046860464 scopus 로고    scopus 로고
    • http://www.dji.com/cn/phantom-2-vision-plus
  • 16
    • 73949128545 scopus 로고    scopus 로고
    • Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance
    • Yang CM. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precis Agric. 2010; 11(1): 61–81.
    • (2010) Precis Agric , vol.11 , Issue.1 , pp. 61-81
    • Yang, C.M.1
  • 17
    • 84885649341 scopus 로고    scopus 로고
    • A plant identification system using shape and morphological features on segmented leaflets: Team IITK
    • Arora A, Gupta A, Bagmar N, Mishra S, Bhattacharya A. A plant identification system using shape and morphological features on segmented leaflets: Team IITK. CLEF. 2012; 2012.
    • (2012) CLEF , vol.2012
    • Arora, A.1    Gupta, A.2    Bagmar, N.3    Mishra, S.4    Bhattacharya, A.5
  • 18
    • 0002811038 scopus 로고    scopus 로고
    • Pa-precision agriculture: Computer-vision-based weed identification under field conditions using controlled lighting
    • Hemmin J, Rath T. PA-Precision Agriculture: Computer-vision-based weed identification under field conditions using controlled lighting. J Agr Eng Res. 2001; 78(3): 233–243.
    • (2001) J Agr Eng Res , vol.78 , Issue.3 , pp. 233-243
    • Hemmin, J.1    Rath, T.2
  • 19
    • 20844436166 scopus 로고    scopus 로고
    • Detection of rice sheath blight for in-season disease management using multispectral remote sensing
    • Qin ZH, Zhang MH. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. Int J Appl Earth Obs. 2005; 7(2):115–128.
    • (2005) Int J Appl Earth Obs , vol.7 , Issue.2 , pp. 115-128
    • Qin, Z.H.1    Zhang, M.H.2
  • 20
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
    • Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE T Geosci Remote. 2009; 47: 722–738.
    • (2009) IEEE T Geosci Remote , vol.47 , pp. 722-738
    • Berni, J.A.J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 21
    • 77956916079 scopus 로고    scopus 로고
    • Current status and future directions of precision aerial application for site-specific crop management in the USA
    • Lan YB, Thomson SJ, Huang YB, Hoffmann CW, Zhang HH. Current status and future directions of precision aerial application for site-specific crop management in the USA. Comput Electron Agr. 2010; 74 (1): 34–38.
    • (2010) Comput Electron Agr , vol.74 , Issue.1 , pp. 34-38
    • Lan, Y.B.1    Thomson, S.J.2    Huang, Y.B.3    Hoffmann, C.W.4    Zhang, H.H.5
  • 22
    • 77958472012 scopus 로고    scopus 로고
    • Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements
    • Huang YB, Thomson SJ, Ortiz BV, Reddy KN, Ding W, Zablotowicz RM, et al. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements. Biosyst Eng. 2010; 107(3): 212–220.
    • (2010) Biosyst Eng , vol.107 , Issue.3 , pp. 212-220
    • Huang, Y.B.1    Thomson, S.J.2    Ortiz, B.V.3    Reddy, K.N.4    Ding, W.5    Zablotowicz, R.M.6
  • 23
    • 80155142527 scopus 로고    scopus 로고
    • Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection
    • Mewes T, Franke J, Menz G. Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precis Agric. 2011; 12(6): 795–812.
    • (2011) Precis Agric , vol.12 , Issue.6 , pp. 795-812
    • Mewes, T.1    Franke, J.2    Menz, G.3
  • 24
    • 77952009867 scopus 로고    scopus 로고
    • QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize
    • Bausch WC, Khosla R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis Agric. 2010; 11: 274–290.
    • (2010) Precis Agric , vol.11 , pp. 274-290
    • Bausch, W.C.1    Khosla, R.2
  • 26
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ. 2004; 90(3): 337–352.
    • (2004) Remote Sens Environ , vol.90 , Issue.3 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 27
    • 84894240293 scopus 로고    scopus 로고
    • Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves
    • Devadas R, Lamb DW, Simpfendorfer S, Backhouse D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis Agric. 2009; 10: 459–470.
    • (2009) Precis Agric , vol.10 , pp. 459-470
    • Devadas, R.1    Lamb, D.W.2    Simpfendorfer, S.3    Backhouse, D.4
  • 28
    • 84868704441 scopus 로고    scopus 로고
    • Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity
    • Robertson N A, Gitelson A, Peng Y, Viña A, Arkebauer T, Rundquist D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron J. 2012; 104(5): 1336.
    • (2012) Agron J , vol.104 , Issue.5 , pp. 1336
    • Robertson, N.A.1    Gitelson, A.2    Peng, Y.3    Viña, A.4    Arkebauer, T.5    Rundquist, D.6
  • 29
    • 0030429663 scopus 로고    scopus 로고
    • NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao BC. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996; 58(3): 257–266.
    • (1996) Remote Sens Environ , vol.58 , Issue.3 , pp. 257-266
    • Gao, B.C.1
  • 30
    • 84862826025 scopus 로고    scopus 로고
    • Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants
    • Wu W, Huang J, Cui KH, Nie LX, Wang Q, Yang F, et al. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crop Res. 2012; 128(2):101–108.
    • (2012) Field Crop Res , vol.128 , Issue.2 , pp. 101-108
    • Wu, W.1    Huang, J.2    Cui, K.H.3    Nie, L.X.4    Wang, Q.5    Yang, F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.