메뉴 건너뛰기




Volumn 35, Issue 6, 2016, Pages

Learning-based view synthesis for light field cameras

Author keywords

Convolutional neural network; Disparity estimation; Light field; View synthesis

Indexed keywords

CAMERAS; CONVOLUTION; ECONOMIC AND SOCIAL EFFECTS; IMAGE RESOLUTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 85046260289     PISSN: 07300301     EISSN: 15577368     Source Type: Journal    
DOI: 10.1145/2980179.2980251     Document Type: Article
Times cited : (749)

References (51)
  • 1
    • 0026818020 scopus 로고
    • Single lens stereo with a plenoptic camera
    • ADELSON, E. H., AND WANG, J. Y. A. 1992. Single lens stereo with a plenoptic camera. IEEE PAMI 14, 2, 99-106.
    • (1992) IEEE PAMI , vol.14 , Issue.2 , pp. 99-106
    • Adelson, E.H.1    Wang, J.Y.A.2
  • 3
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with BM3D?
    • BURGER, H. C., SCHULER, C. J., AND HARMELING, S. 2012. Image denoising: Can plain neural networks compete with BM3D? In IEEE CVPR, 2392-2399.
    • (2012) IEEE CVPR , pp. 2392-2399
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 4
    • 84880147878 scopus 로고    scopus 로고
    • Silhouette-aware warping for image-based rendering
    • CHAURASIA, G., SORKINE, O., AND DRETTAKIS, G. 2011. Silhouette-aware warping for image-based rendering. In EGSR, 1223-1232.
    • (2011) EGSR , pp. 1223-1232
    • Chaurasia, G.1    Sorkine, O.2    Drettakis, G.3
  • 5
    • 84880170448 scopus 로고    scopus 로고
    • Depth synthesis and local warps for plausible image-based navigation
    • CHAURASIA, G., DUCHENE, S., SORKINE-HORNUNG, O., AND DRETTAKIS, G. 2013. Depth synthesis and local warps for plausible image-based navigation. ACM TOG 32, 3, 30:1-30:12.
    • (2013) ACM TOG , vol.32 , Issue.3 , pp. 301-3012
    • Chaurasia, G.1    Duchene, S.2    Sorkine-Hornung, O.3    Drettakis, G.4
  • 6
    • 84898833031 scopus 로고    scopus 로고
    • Modeling the calibration pipeline of the lytro camera for high quality light-field image reconstruction
    • CHO, D., LEE, M., KIM, S., AND TAI, Y.-W. 2013. Modeling the calibration pipeline of the lytro camera for high quality light-field image reconstruction. In IEEE ICCV, 3280-3287.
    • (2013) IEEE ICCV , pp. 3280-3287
    • Cho, D.1    Lee, M.2    Kim, S.3    Tai, Y.-W.4
  • 7
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • DONG, C., LOY, C. C., HE, K., AND TANG, X. 2014. Learning a deep convolutional network for image super-resolution. In ECCV, 184-199.
    • (2014) ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 8
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • DOSOVITSKIY, A., SPRINGENBERG, J. T., AND BROX, T. 2015. Learning to generate chairs with convolutional neural networks. In IEEE CVPR, 1538-1546.
    • (2015) IEEE CVPR , pp. 1538-1546
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 10
    • 0344983275 scopus 로고    scopus 로고
    • Image-based rendering using image-based priors
    • FITZGIBBON, A., WEXLER, Y., AND ZISSERMAN, A. 2003. Image-based rendering using image-based priors. In IEEEICCV, 1176-1183 vol.2.
    • (2003) IEEEICCV , vol.2 , pp. 1176-1183
    • Fitzgibbon, A.1    Wexler, Y.2    Zisserman, A.3
  • 11
    • 84986252211 scopus 로고    scopus 로고
    • Deepstereo: Learning to predict new views from the worlds imagery
    • FLYNN, J., NEULANDER, I., PHILBIN, J., AND SNAVELY, N. 2016. Deepstereo: Learning to predict new views from the worlds imagery. In IEEE CVPR, 5515-5524.
    • (2016) IEEE CVPR , pp. 5515-5524
    • Flynn, J.1    Neulander, I.2    Philbin, J.3    Snavely, N.4
  • 12
    • 77953810904 scopus 로고    scopus 로고
    • Accurate, dense, and robust multiview stereopsis
    • FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE PAMI 32, 8, 1362-1376.
    • (2010) IEEE PAMI , vol.32 , Issue.8 , pp. 1362-1376
    • Furukawa, Y.1    Ponce, J.2
  • 14
    • 84898490359 scopus 로고    scopus 로고
    • Light field compression using disparity-compensated lifting
    • 1
    • GIROD, B., CHANG, C.-L., RAMANATHAN, P., AND ZHU, X. 2003. Light field compression using disparity-compensated lifting. In IEEE ICME, vol. 1, I-373-6 vol.1.
    • (2003) IEEE ICME , vol.1 , pp. I-3736
    • Girod, B.1    Chang, C.-L.2    Ramanathan, P.3    Zhu, X.4
  • 15
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • GLOROT, X., AND BENGIO, Y. 2010. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, vol. 9, 249-256.
    • (2010) AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 17
    • 85057807907 scopus 로고    scopus 로고
    • Convolutional networks for shape from light field
    • HEBER, S., AND POCK, T. 2016. Convolutional networks for shape from light field. In IEEE CVPR.
    • (2016) IEEE CVPR
    • Heber, S.1    Pock, T.2
  • 18
    • 84959182988 scopus 로고    scopus 로고
    • Accurate depth map estimation from a lenslet light field camera
    • JEON, H. G., PARK, J., CHOE, G., PARK, J., BOK, Y., TAI, Y. W., AND KWEON, I. S. 2015. Accurate depth map estimation from a lenslet light field camera. In IEEE CVPR, 1547-1555.
    • (2015) IEEE CVPR , pp. 1547-1555
    • Jeon, H.G.1    Park, J.2    Choe, G.3    Park, J.4    Bok, Y.5    Tai, Y.W.6    Kweon, I.S.7
  • 19
    • 84905756739 scopus 로고    scopus 로고
    • 3D object manipulation in a single photograph using stock 3D models
    • KHOLGADE, N., SIMON, T., EFROS, A., AND SHEIKH, Y. 2014. 3D object manipulation in a single photograph using stock 3D models. ACM TOG 33, 4, 127.
    • (2014) ACM TOG , vol.33 , Issue.4 , pp. 127
    • Kholgade, N.1    Simon, T.2    Efros, A.3    Sheikh, Y.4
  • 21
    • 77955989078 scopus 로고    scopus 로고
    • Linear view synthesis using a dimensionality gap light field prior
    • LEVIN, A., AND DURAND, F. 2010. Linear view synthesis using a dimensionality gap light field prior. In IEEE CVPR, 1831-1838.
    • (2010) IEEE CVPR , pp. 1831-1838
    • Levin, A.1    Durand, F.2
  • 22
  • 23
    • 85057868002 scopus 로고    scopus 로고
    • LYTRO, 2016. https://www.lytro.com/.
    • (2016) LYTRO
  • 24
    • 70349661687 scopus 로고    scopus 로고
    • Moving gradients: A path-based method for plausible image interpolation
    • MAHAJAN, D., HUANG, F.-C., MATUSIK, W., RAMAMOORTHI, R., AND BELHUMEUR, P. 2009. Moving gradients: a path-based method for plausible image interpolation. ACM TOG 28, 3, 42.
    • (2009) ACM TOG , vol.28 , Issue.3 , pp. 42
    • Mahajan, D.1    Huang, F.-C.2    Matusik, W.3    Ramamoorthi, R.4    Belhumeur, P.5
  • 25
    • 84880766672 scopus 로고    scopus 로고
    • Compressive light field photography using overcomplete dictionaries and optimized projections
    • MARWAH, K., WETZSTEIN, G., BANDO, Y., AND RASKAR, R. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM TOG 32, 4, 46:1-46:12.
    • (2013) ACM TOG , vol.32 , Issue.4 , pp. 461-4612
    • Marwah, K.1    Wetzstein, G.2    Bando, Y.3    Raskar, R.4
  • 26
    • 84864985325 scopus 로고    scopus 로고
    • Light field denoising, light field superresolution and stereo camera based re-focussing using a GMM light field patch prior
    • MITRA, K., AND VEERARAGHAVAN, A. 2012. Light field denoising, light field superresolution and stereo camera based re-focussing using a GMM light field patch prior. In IEEE CVPRW, 22-28.
    • (2012) IEEE CVPRW , pp. 22-28
    • Mitra, K.1    Veeraraghavan, A.2
  • 28
    • 85057795927 scopus 로고    scopus 로고
    • PELICAN IMAGING, 2016. Capture life in 3D. http://www.pelicanimaging.com/.
    • (2016) Capture Life in 3D
  • 31
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. 1986. Learning representations by back-propagating errors. Nature 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 85057785357 scopus 로고    scopus 로고
    • Directional super-resolution by means of coded sampling and guided upsampling
    • SCHEDL, D. C., BIRKLBAUER, C., AND BIMBER, O. 2015. Directional super-resolution by means of coded sampling and guided upsampling. In IEEE ICCP, 1-10.
    • (2015) IEEE ICCP , pp. 1-10
    • Schedl, D.C.1    Birklbauer, C.2    Bimber, O.3
  • 34
    • 84920748299 scopus 로고    scopus 로고
    • Light field reconstruction using sparsity in the continuous fourier domain
    • SHI, L., HASSANIEH, H., DAVIS, A., KATABI, D., AND DURAND, F. 2014. Light field reconstruction using sparsity in the continuous fourier domain. ACM TOG 34, 1, 12:1-12:13.
    • (2014) ACM TOG , vol.34 , Issue.1 , pp. 121-1213
    • Shi, L.1    Hassanieh, H.2    Davis, A.3    Katabi, D.4    Durand, F.5
  • 36
    • 84959239596 scopus 로고    scopus 로고
    • Learning a convolutional neural network for non-uniform motion blur removal
    • SUN, J., CAO, W., XU, Z., AND PONCE, J. 2015. Learning a convolutional neural network for non-uniform motion blur removal. In IEEE CVPR, 769-777.
    • (2015) IEEE CVPR , pp. 769-777
    • Sun, J.1    Cao, W.2    Xu, Z.3    Ponce, J.4
  • 37
    • 84898775850 scopus 로고    scopus 로고
    • Depth from combining defocus and correspondence using light-field cameras
    • TAO, M. W., HADAP, S., MALIK, J., AND RAMAMOORTHI, R. 2013. Depth from combining defocus and correspondence using light-field cameras. In IEEE ICCV, 673-680.
    • (2013) IEEE ICCV , pp. 673-680
    • Tao, M.W.1    Hadap, S.2    Malik, J.3    Ramamoorthi, R.4
  • 38
    • 84959225494 scopus 로고    scopus 로고
    • Depth from shading, defocus, and correspondence using light-field angular coherence
    • TAO, M. W., SRINIVASAN, P. P., MALIK, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R. 2015. Depth from shading, defocus, and correspondence using light-field angular coherence. In IEEE CVPR, 1940-1948.
    • (2015) IEEE CVPR , pp. 1940-1948
    • Tao, M.W.1    Srinivasan, P.P.2    Malik, J.3    Rusinkiewicz, S.4    Ramamoorthi, R.5
  • 39
    • 84990068287 scopus 로고    scopus 로고
    • Single-view to multi-view: Reconstructing unseen views with a convolutional network
    • abs/1511.06702
    • TATARCHENKO, M., DOSOVITSKIY, A., AND BROX, T. 2015. Single-view to multi-view: Reconstructing unseen views with a convolutional network. CoRR abs/1511.06702.
    • (2015) CoRR
    • Tatarchenko, M.1    Dosovitskiy, A.2    Brox, T.3
  • 40
    • 0242468121 scopus 로고    scopus 로고
    • Interactive rendering from compressed light fields
    • Nov
    • TONG, X., AND GRAY, R. M. 2003. Interactive rendering from compressed light fields. IEEE TCSVT 13, 11 (Nov), 1080-1091.
    • (2003) IEEE TCSVT , vol.13 , Issue.11 , pp. 1080-1091
    • Tong, X.1    Gray, R.M.2
  • 41
    • 84962815548 scopus 로고    scopus 로고
    • MatconvNet: Convolutional neural networks for Matlab
    • VEDALDI, A., AND LENC, K. 2015. MatConvNet: Convolutional neural networks for Matlab. In ACMMM, 689-692.
    • (2015) ACMMM , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 42
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • April
    • WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004. Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 4 (April), 600-612.
    • (2004) IEEE TIP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.2    Sheikh, H.3    Simoncelli, E.4
  • 43
    • 84973908604 scopus 로고    scopus 로고
    • Occlusion-aware depth estimation using light-field cameras
    • WANG, T. C., EFROS, A. A., AND RAMAMOORTHI, R. 2015. Occlusion-aware depth estimation using light-field cameras. In IEEE ICCV, 3487-3495.
    • (2015) IEEE ICCV , pp. 3487-3495
    • Wang, T.C.1    Efros, A.A.2    Ramamoorthi, R.3
  • 44
    • 84866689653 scopus 로고    scopus 로고
    • Globally consistent depth labeling of 4D light fields
    • WANNER, S., AND GOLDLUECKE, B. 2012. Globally consistent depth labeling of 4D light fields. In IEEE CVPR, 41-48.
    • (2012) IEEE CVPR , pp. 41-48
    • Wanner, S.1    Goldluecke, B.2
  • 45
    • 84894523748 scopus 로고    scopus 로고
    • Variational light field analysis for disparity estimation and super-resolution
    • WANNER, S., AND GOLDLUECKE, B. 2014. Variational light field analysis for disparity estimation and super-resolution. IEEE PAMI 36, 3, 606-619.
    • (2014) IEEE PAMI , vol.36 , Issue.3 , pp. 606-619
    • Wanner, S.1    Goldluecke, B.2
  • 47
    • 84965161391 scopus 로고    scopus 로고
    • Weakly-supervised disentangling with recurrent transformations for 3D view synthesis
    • YANG, J., REED, S. E., YANG, M.-H., AND LEE, H. 2015. Weakly-supervised disentangling with recurrent transformations for 3D view synthesis. In NIPS, 1099-1107.
    • (2015) NIPS , pp. 1099-1107
    • Yang, J.1    Reed, S.E.2    Yang, M.-H.3    Lee, H.4
  • 48
    • 84962026650 scopus 로고    scopus 로고
    • Learning a deep convolutional network for light-field image super-resolution
    • YOON, Y., JEON, H. G., YOO, D., LEE, J. Y., AND KWEON, I. S. 2015. Learning a deep convolutional network for light-field image super-resolution. In IEEE ICCV Workshop, 57-65.
    • (2015) IEEE ICCV Workshop , pp. 57-65
    • Yoon, Y.1    Jeon, H.G.2    Yoo, D.3    Lee, J.Y.4    Kweon, I.S.5
  • 49
    • 84947789409 scopus 로고    scopus 로고
    • Light field from micro-baseline image pair
    • ZHANG, Z., LIU, Y., AND DAI, Q. 2015. Light field from micro-baseline image pair. In IEEE CVPR, 3800-3809.
    • (2015) IEEE CVPR , pp. 3800-3809
    • Zhang, Z.1    Liu, Y.2    Dai, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.