메뉴 건너뛰기




Volumn 48, Issue 5, 2018, Pages 461-479

Integrating forest inventory data and MODIS data to map species-level biomass in chinese boreal forests

Author keywords

Chinese boreal forest; KNN; MODIS; Random Forest (RF); Species level biomass

Indexed keywords

BIOMASS; DATA INTEGRATION; DECISION TREES; FORESTRY; RADIOMETERS; SATELLITE IMAGERY;

EID: 85046071328     PISSN: 00455067     EISSN: 12086037     Source Type: Journal    
DOI: 10.1139/cjfr-2017-0346     Document Type: Article
Times cited : (17)

References (79)
  • 1
    • 85046079835 scopus 로고    scopus 로고
    • ccaPP: (Robust) canonical correlation analysis via projection pursuit [online]. R package version 0.3.0
    • Alfons, A. 2013. ccaPP: (Robust) canonical correlation analysis via projection pursuit [online]. R package version 0.3.0. Available from http://CRAN.R-project.org/package=ccaPP.
    • (2013)
    • Alfons, A.1
  • 2
    • 84996425457 scopus 로고    scopus 로고
    • IPCC default soil classes derived from the Harmonized World Soil Data Base (Ver. 1.1) [online]. Report 2009/02b
    • CBP) and ISRIS – World Soil Information, Wageningen (with dataset). Available from
    • Batjes, N.H. 2009. IPCC default soil classes derived from the Harmonized World Soil Data Base (Ver. 1.1) [online]. Report 2009/02b, Carbon Benefits Project (CBP) and ISRIS – World Soil Information, Wageningen (with dataset). Available from http://heihedata.org.
    • (2009) Carbon Benefits Project
    • Batjes, N.H.1
  • 6
    • 0000286531 scopus 로고
    • An ordination of the upland forest communities of southern Wisconsin
    • Bray, J.R., and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27(4): 325–349. doi:10.2307/1942268.
    • (1957) Ecol. Monogr , vol.27 , Issue.4 , pp. 325-349
    • Bray, J.R.1    Curtis, J.T.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests.
    • Breiman, L. 2001. Random forests. Mach. Learn. 45(1): 5–32. doi:10.1023/A: 1010933404324.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 45849121032 scopus 로고    scopus 로고
    • Managing forests for climate change mitigation
    • PMID: 18556550
    • Canadell, J.G., and Raupach, M.R. 2008. Managing forests for climate change mitigation. Science, 320(5882): 1456–1457. doi:10.1126/science.1155458. PMID: 18556550.
    • (2008) Science , vol.320 , Issue.5882 , pp. 1456-1457
    • Canadell, J.G.1    Raupach, M.R.2
  • 10
    • 78651428989 scopus 로고    scopus 로고
    • Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields
    • Cartus, O., Santoro, M., Schmullius, C., and Li, Z. 2011. Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields. Remote Sens. Environ. 115(3): 931–943. doi:10.1016/j.rse.2010.12.003.
    • (2011) Remote Sens. Environ , vol.115 , Issue.3 , pp. 931-943
    • Cartus, O.1    Santoro, M.2    Schmullius, C.3    Li, Z.4
  • 11
    • 84930027547 scopus 로고    scopus 로고
    • National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China
    • Chi, H., Sun, G., Huang, J., Guo, Z., Ni, W., and Fu, A. 2015. National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China. Remote Sens. 7(5): 5534–5564. doi:10.3390/rs70505534.
    • (2015) Remote Sens , vol.7 , Issue.5 , pp. 5534-5564
    • Chi, H.1    Sun, G.2    Huang, J.3    Guo, Z.4    Ni, W.5    Fu, A.6
  • 12
    • 40549143397 scopus 로고    scopus 로고
    • YaImpute: An R package for kNN imputation
    • Crookston, N.L., and Finley, A.O. 2008. yaImpute: an R package for kNN imputation. J. Stat. Softw. 23(10): 1–16. doi:10.18637/jss.v023.i10.
    • (2008) J. Stat. Softw , vol.23 , Issue.10 , pp. 1-16
    • Crookston, N.L.1    Finley, A.O.2
  • 14
    • 84925442534 scopus 로고    scopus 로고
    • An imputed forest composition map for New England screened by species range boundaries. For. Ecol
    • Duveneck, M.J., Thompson, J.R., and Wilson, B.T. 2015. An imputed forest composition map for New England screened by species range boundaries. For. Ecol. Manage. 347: 107–115. doi:10.1016/j.foreco.2015.03.016.
    • (2015) Manage , vol.347 , pp. 107-115
    • Duveneck, M.J.1    Thompson, J.R.2    Wilson, B.T.3
  • 15
    • 0031766470 scopus 로고    scopus 로고
    • Forest biomass of China: An estimate based on the biomass–volume relationship
    • Fang, J.-y., Wang, G.G., Liu, G.-h., and Xu, S.-l. 1998. Forest biomass of China: an estimate based on the biomass–volume relationship. Ecol. Appl. 8(4): 1084–1091. doi:10.1890/1051-0761(1998)008[1084:FBOCAE]2.0.CO;2.
    • (1998) Ecol. Appl , vol.8 , Issue.4 , pp. 1084-1091
    • Fang, J.-Y.1    Wang, G.G.2    Liu, G.-H.3    Xu, S.-L.4
  • 16
    • 85046090446 scopus 로고    scopus 로고
    • 1999. The biomass and productivity of forest ecosystem of cool temperate forest
    • Science Press, Beijing
    • Feng, Z. 1999. The biomass and productivity of forest ecosystem of cool temperate forest. In The biomass and productivity of forest ecosystem in China. Science Press, Beijing. pp. 51–60.
    • The Biomass and Productivity of Forest Ecosystem in China , pp. 51-60
    • Feng, Z.1
  • 17
    • 0342647282 scopus 로고    scopus 로고
    • Forest functions, ecosystem stability and management. For. Ecol
    • Führer, E. 2000. Forest functions, ecosystem stability and management. For. Ecol. Manage. 132(1): 29–38. doi:10.1016/S0378-1127(00)00377-7.
    • (2000) Manage , vol.132 , Issue.1 , pp. 29-38
    • Führer, E.1
  • 18
    • 0030429663 scopus 로고    scopus 로고
    • NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.-c. 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58(3): 257–266. doi:10.1016/S0034-4257(96)00067-3.
    • (1996) Remote Sens. Environ , vol.58 , Issue.3 , pp. 257-266
    • Gao, B.-C.1
  • 19
    • 1442315675 scopus 로고    scopus 로고
    • Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation
    • PMID:15022830
    • Gitelson, A.A. 2004. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161(2): 165–173. doi:10.1078/0176-1617-01176. PMID:15022830.
    • (2004) J. Plant Physiol , vol.161 , Issue.2 , pp. 165-173
    • Gitelson, A.A.1
  • 20
    • 0036215007 scopus 로고    scopus 로고
    • Novel algorithms for remote estimation of vegetation fraction
    • Gitelson, A.A., Kaufman, Y.J., Stark, R., and Rundquist, D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80(1): 76–87. doi:10.1016/S0034-4257(01)00289-9.
    • (2002) Remote Sens. Environ , vol.80 , Issue.1 , pp. 76-87
    • Gitelson, A.A.1    Kaufman, Y.J.2    Stark, R.3    Rundquist, D.4
  • 21
    • 84898791866 scopus 로고    scopus 로고
    • Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS
    • Gómez, C., White, J.C., Wulder, M.A., and Alejandro, P. 2014. Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS J. Photogramm. Remote Sens. 93: 14–28. doi:10.1016/j.isprsjprs.2014.03.008.
    • (2014) J. Photogramm. Remote Sens , vol.93 , pp. 14-28
    • Gómez, C.1    White, J.C.2    Wulder, M.A.3    Alejandro, P.4
  • 23
    • 38349094174 scopus 로고    scopus 로고
    • Forest landscape models: Definitions, characterization, and classification. For. Ecol
    • He, H.S. 2008. Forest landscape models: definitions, characterization, and classification. For. Ecol. Manage. 254(3): 484–498. doi:10.1016/j.foreco.2007.08.022.
    • (2008) Manage , vol.254 , Issue.3 , pp. 484-498
    • He, H.S.1
  • 24
    • 0031791830 scopus 로고    scopus 로고
    • Integration of GIS data and classified satellite imagery for regional forest assessment
    • He, H.S., Mladenoff, D.J., Radeloff, V.C., and Crow, T.R. 1998. Integration of GIS data and classified satellite imagery for regional forest assessment. Ecol. Appl. 8: 1072–1083. doi:10.1890/1051-0761(1998)008[1072:IOGDAC]2.0.CO;2.
    • (1998) Ecol. Appl , vol.8 , pp. 1072-1083
    • He, H.S.1    Mladenoff, D.J.2    Radeloff, V.C.3    Crow, T.R.4
  • 25
    • 84880049507 scopus 로고    scopus 로고
    • R package version 2.4-20. R Foundation for Statistical Computing, Vienna, Austria
    • Hijmans, R.J. 2015. raster: geographic data analysis and modeling. R package version 2.4-20. R Foundation for Statistical Computing, Vienna, Austria.
    • (2015) Raster: Geographic Data Analysis and Modeling
    • Hijmans, R.J.1
  • 26
    • 70350050130 scopus 로고    scopus 로고
    • An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
    • Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., and Vogelmann, J.E. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 114(1): 183–198. doi:10.1016/j.rse.2009.08.017.
    • (2010) Remote Sens. Environ , vol.114 , Issue.1 , pp. 183-198
    • Huang, C.1    Goward, S.N.2    Masek, J.G.3    Thomas, N.4    Zhu, Z.5    Vogelmann, J.E.6
  • 27
    • 85019373307 scopus 로고    scopus 로고
    • Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA
    • Huang, S., Ramirez, C., Conway, S., Kennedy, K., Kohler, T., and Liu, J. 2017. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA. Can. J. For. Res. 47(1): 113–124. doi:10.1139/cjfr-2016-0209.
    • (2017) Can. J. For. Res , vol.47 , Issue.1 , pp. 113-124
    • Huang, S.1    Ramirez, C.2    Conway, S.3    Kennedy, K.4    Kohler, T.5    Liu, J.6
  • 28
    • 41249100721 scopus 로고    scopus 로고
    • Nearest neighbor imputation of species-level, plot-scale forest structure attributes from lidar data
    • Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., and Falkowski, M.J. 2008. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from lidar data. Remote Sens. Environ. 112(5): 2232–2245. doi:10.1016/j.rse.2007.10.009.
    • (2008) Remote Sens. Environ , vol.112 , Issue.5 , pp. 2232-2245
    • Hudak, A.T.1    Crookston, N.L.2    Evans, J.S.3    Hall, D.E.4    Falkowski, M.J.5
  • 29
    • 0024165401 scopus 로고
    • A Soil-Adjusted Vegetation Index (Savi)
    • Huete, A.R. 1988. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 25(3): 295–309. doi:10.1016/0034-4257(88)90106-X.
    • (1988) Remote Sens. Environ , vol.25 , Issue.3 , pp. 295-309
    • Huete, A.R.1
  • 30
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83(1–2): 195–213. doi:10.1016/S0034-4257(02)00096-2.
    • (2002) Remote Sens. Environ , vol.83 , Issue.1-2 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 31
    • 0024856777 scopus 로고
    • Detection of changes in leaf water content using near- and middle-infrared reflectances
    • Hunt, E.R., Jr., and Rock, B.N. 1989. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 30(1): 43–54. doi:10.1016/0034-4257(89)90046-1.
    • (1989) Remote Sens. Environ , vol.30 , Issue.1 , pp. 43-54
    • Hunt, E.R.1    Rock, B.N.2
  • 33
    • 0000043946 scopus 로고
    • Derivation of leaf-area index from quality of light on the forest floor
    • Jordan, C.F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4): 663–666. doi:10.2307/1936256.
    • (1969) Ecology , vol.50 , Issue.4 , pp. 663-666
    • Jordan, C.F.1
  • 35
    • 84902980747 scopus 로고    scopus 로고
    • Effects of environmental heterogeneity on predictions of tree species’ abundance in response to climate warming
    • Liang, Y., He, H.S., Wu, Z., and Yang, J. 2014. Effects of environmental heterogeneity on predictions of tree species’ abundance in response to climate warming. Environ. Modell. Softw. 59: 222–231. doi:10.1016/j.envsoft.2014.05.025.
    • (2014) Environ. Modell. Softw , vol.59 , pp. 222-231
    • Liang, Y.1    He, H.S.2    Wu, Z.3    Yang, J.4
  • 37
    • 33646702801 scopus 로고    scopus 로고
    • The potential and challenge of remote sensing-based biomass estimation
    • Lu, D. 2006. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7): 1297–1328. doi:10.1080/01431160500486732.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.7 , pp. 1297-1328
    • Lu, D.1
  • 38
    • 84905054326 scopus 로고    scopus 로고
    • Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China
    • Luo, X., He, H.S., Liang, Y., Wang, W.J., Wu, Z., and Fraser, J.S. 2014. Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China. Landscape Ecol. 29(7): 1187–1200. doi:10.1007/s10980-014-0051-x.
    • (2014) Landscape Ecol , vol.29 , Issue.7 , pp. 1187-1200
    • Luo, X.1    He, H.S.2    Liang, Y.3    Wang, W.J.4    Wu, Z.5    Fraser, J.S.6
  • 39
    • 0002975203 scopus 로고
    • On the generalised distance in statistics
    • Mahalanobis, P.C. 1936. On the generalised distance in statistics. Proc. Natl. Inst. Sci. India, 2(1): 49–55.
    • (1936) Proc. Natl. Inst. Sci. India , vol.2 , Issue.1 , pp. 49-55
    • Mahalanobis, P.C.1
  • 40
    • 84864514574 scopus 로고    scopus 로고
    • Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China
    • Mao, D., Wang, Z., Luo, L., and Ren, C. 2012. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinform. 18: 528–536. doi:10.1016/j.jag.2011.10.007.
    • (2012) Int. J. Appl. Earth Obs. Geoinform , vol.18 , pp. 528-536
    • Mao, D.1    Wang, Z.2    Luo, L.3    Ren, C.4
  • 41
    • 0032157733 scopus 로고    scopus 로고
    • Determining forest species composition using high spectral resolution remote sensing data
    • Martin, M.E., Newman, S.D., Aber, J.D., and Congalton, R.G. 1998. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ. 65(3): 249–254. doi:10.1016/S0034-4257(98)00035-2.
    • (1998) Remote Sens. Environ , vol.65 , Issue.3 , pp. 249-254
    • Martin, M.E.1    Newman, S.D.2    Aber, J.D.3    Congalton, R.G.4
  • 42
    • 58249131744 scopus 로고    scopus 로고
    • A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes
    • McRoberts, R.E. 2009. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes. Remote Sens. Environ. 113(3): 532–545. doi:10.1016/j.rse.2008.10.001.
    • (2009) Remote Sens. Environ , vol.113 , Issue.3 , pp. 532-545
    • McRoberts, R.E.1
  • 43
    • 84857982932 scopus 로고    scopus 로고
    • Estimating forest attribute parameters for small areas using nearest neighbors techniques
    • McRoberts, R.E. 2012. Estimating forest attribute parameters for small areas using nearest neighbors techniques. For. Ecol. Manage. 272: 3–12. doi:10.1016/j.foreco.2011.06.039.
    • (2012) For. Ecol. Manage , vol.272 , pp. 3-12
    • McRoberts, R.E.1
  • 44
    • 0000256443 scopus 로고
    • Most similar neighbor: An improved sampling inference procedure for natural resource planning
    • Moeur, M., and Stage, A.R. 1995. Most similar neighbor: an improved sampling inference procedure for natural resource planning. For. Sci. 41(2): 337–359.
    • (1995) For. Sci , vol.41 , Issue.2 , pp. 337-359
    • Moeur, M.1    Stage, A.R.2
  • 45
    • 0035658404 scopus 로고    scopus 로고
    • Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure information
    • Muinonen, E., Maltamo, M., Hyppänen, H., and Vainikainen, V. 2001. Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure information. Remote Sens. Environ. 78(3): 223–228. doi:10.1016/S0034-4257(01)00220-6.
    • (2001) Remote Sens. Environ , vol.78 , Issue.3 , pp. 223-228
    • Muinonen, E.1    Maltamo, M.2    Hyppänen, H.3    Vainikainen, V.4
  • 46
    • 0036229447 scopus 로고    scopus 로고
    • Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA
    • Ohmann, J.L., and Gregory, M.J. 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA. Can. J. For. Res. 32(4): 725–741. doi:10.1139/x02-011.
    • (2002) Can. J. For. Res , vol.32 , Issue.4 , pp. 725-741
    • Ohmann, J.L.1    Gregory, M.J.2
  • 48
    • 79960100484 scopus 로고    scopus 로고
    • Mapping gradients of community composition with nearest-neighbour imputation: Extending plot data for landscape analysis
    • Ohmann, J.L., Gregory, M.J., Henderson, E.B., and Roberts, H.M. 2011. Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis. J. Veg. Sci. 22(4): 660–676. doi:10.1111/j.1654-1103.2010.01244.x.
    • (2011) J. Veg. Sci , vol.22 , Issue.4 , pp. 660-676
    • Ohmann, J.L.1    Gregory, M.J.2    Henderson, E.B.3    Roberts, H.M.4
  • 49
    • 84864572142 scopus 로고    scopus 로고
    • Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens
    • Pflugmacher, D., Cohen, W.B., and Kennedy, R.E. 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 122: 146–165. doi:10.1016/j.rse.2011.09.025.
    • (2012) Environ , vol.122 , pp. 146-165
    • Pflugmacher, D.1    Cohen, W.B.2    Kennedy, R.E.3
  • 50
    • 0027063079 scopus 로고
    • GEMI: A non-linear index to monitor global vegetation from satellites
    • Pinty, B., and Verstraete, M.M. 1992. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101(1): 15–20. doi:10.1007/BF00031911.
    • (1992) Vegetatio , vol.101 , Issue.1 , pp. 15-20
    • Pinty, B.1    Verstraete, M.M.2
  • 51
    • 76049083444 scopus 로고    scopus 로고
    • Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches.
    • Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., and Ohmann, J.L. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens. Environ. 114(5): 1053–1068. doi:10.1016/j.rse.2009.12.018.
    • (2010) Remote Sens. Environ , vol.114 , Issue.5 , pp. 1053-1068
    • Powell, S.L.1    Cohen, W.B.2    Healey, S.P.3    Kennedy, R.E.4    Moisen, G.G.5    Pierce, K.B.6    Ohmann, J.L.7
  • 52
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.M., Iverson, L.R., and Liaw, A. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9(2): 181–199. doi:10.1007/s10021-005-0054-1.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 53
    • 84863422450 scopus 로고    scopus 로고
    • A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens
    • Pu, R., and Landry, S. 2012. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 124: 516–533. doi:10.1016/j.rse.2012.06.011.
    • (2012) Environ , vol.124 , pp. 516-533
    • Pu, R.1    Landry, S.2
  • 55
    • 85017001875 scopus 로고    scopus 로고
    • Remote sensing estimation of aboveground forest carbon storage in Daxing’an Mountains based on kNN method
    • Qi, Y., and Li, F. 2015. Remote sensing estimation of aboveground forest carbon storage in Daxing’an Mountains based on kNN method. Sci. Silvae Sin. 51(5): 10.
    • (2015) Sci. Silvae Sin , vol.51 , Issue.5 , pp. 10
    • Qi, Y.1    Li, F.2
  • 56
    • 85046092874 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from
    • R Core Team. 2013. R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org.
    • (2013)
  • 57
    • 77955268205 scopus 로고    scopus 로고
    • An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data.
    • Riemann, R., Wilson, B.T., Lister, A., and Parks, S. 2010. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data. Remote Sens. Environ. 114(10): 2337–2352. doi:10.1016/j.rse.2010.05.010.
    • (2010) Remote Sens. Environ , vol.114 , Issue.10 , pp. 2337-2352
    • Riemann, R.1    Wilson, B.T.2    Lister, A.3    Parks, S.4
  • 60
    • 33846692695 scopus 로고    scopus 로고
    • Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol
    • Scheller, R.M., Domingo, J.B., Sturtevant, B.R., Williams, J.S., Rudy, A., Gustafson, E.J., and Mladenoff, D.J. 2007. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol. Modell. 201(3–4): 409–419. doi:10.1016/j.ecolmodel.2006.10.009.
    • (2007) Modell , vol.201 , Issue.3-4 , pp. 409-419
    • Scheller, R.M.1    Domingo, J.B.2    Sturtevant, B.R.3    Williams, J.S.4    Rudy, A.5    Gustafson, E.J.6    Mladenoff, D.J.7
  • 62
    • 84877298110 scopus 로고    scopus 로고
    • Forest attribute imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms
    • Shataee, S., Kalbi, S., Fallah, A., and Pelz, D. 2012. Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. Int. J. Remote Sens. 33(19): 6254–6280. doi:10.1080/01431161.2012.682661.
    • (2012) Int. J. Remote Sens , vol.33 , Issue.19 , pp. 6254-6280
    • Shataee, S.1    Kalbi, S.2    Fallah, A.3    Pelz, D.4
  • 63
    • 84949490566 scopus 로고    scopus 로고
    • Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens
    • Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, S., and Fang, J. 2016. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 173: 187–199. doi:10.1016/j.rse.2015.12.002.
    • (2016) Environ , vol.173 , pp. 187-199
    • Su, Y.1    Guo, Q.2    Xue, B.3    Hu, T.4    Alvarez, O.5    Tao, S.6    Fang, J.7
  • 64
    • 0037424924 scopus 로고    scopus 로고
    • Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia
    • Temesgen, B.H., LeMay, V.M., Froese, K.L., and Marshall, P.L. 2003. Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia. For. Ecol. Manage. 177(1–3): 277–285. doi:10.1016/S0378-1127(02)00321-3.
    • (2003) For. Ecol. Manage , vol.177 , Issue.1-3 , pp. 277-285
    • Temesgen, B.H.1    Lemay, V.M.2    Froese, K.L.3    Marshall, P.L.4
  • 65
    • 0026405478 scopus 로고
    • 1991. Satellite image-based national forest inventory of Finland for publication in the IGARSS’91 digest
    • In Geoscience and Remote Sensing Symposium, Espoo, Finland, 3–6 June, IEEE
    • Tomppo, E., and Katila, M. 1991. Satellite image-based national forest inventory of Finland for publication in the IGARSS’91 digest. In Geoscience and Remote Sensing Symposium, IGARSS’91. Remote Sensing: Global Monitoring for Earth Management, International, Espoo, Finland, 3–6 June 1991. IEEE. pp. 1141–1144.
    • (1991) IGARSS’91. Remote Sensing: Global Monitoring for Earth Management, International , pp. 1141-1144
    • Tomppo, E.1    Katila, M.2
  • 66
    • 41349104652 scopus 로고    scopus 로고
    • Combining national forest inventory field plots and remote sensing data for forest databases
    • Tomppo, E., Olsson, H., Ståhl, G., Nilsson, M., Hagner, O., and Katila, M. 2008. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 112(5): 1982–1999. doi:10.1016/j.rse.2007.03.032.
    • (2008) Remote Sens. Environ , vol.112 , Issue.5 , pp. 1982-1999
    • Tomppo, E.1    Olsson, H.2    Ståhl, G.3    Nilsson, M.4    Hagner, O.5    Katila, M.6
  • 67
    • 84900840804 scopus 로고    scopus 로고
    • Predicting finescale tree species abundance patterns using biotic variables derived from lidar and high spatial resolution imagery
    • van Ewijk, K.Y., Randin, C.F., Treitz, P.M., and Scott, N.A. 2014. Predicting finescale tree species abundance patterns using biotic variables derived from lidar and high spatial resolution imagery. Remote Sens. Environ. 150: 120–131. doi:10.1016/j.rse.2014.04.026.
    • (2014) Remote Sens. Environ , vol.150 , pp. 120-131
    • Van Ewijk, K.Y.1    Randin, C.F.2    Treitz, P.M.3    Scott, N.A.4
  • 68
    • 84899678406 scopus 로고    scopus 로고
    • Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province
    • Wang, X., Yu, C., Hongwei, C., Yuanman, H., Linlin, J., Yuting, F., Wen, W., and Haifeng, W. 2014. Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China. Chin. J. Appl. Ecol. 4: 974–982. doi:10.13287/j.1001-9332.2014.0082.
    • (2014) China. Chin. J. Appl. Ecol , vol.4 , pp. 974-982
    • Wang, X.1    Yu, C.2    Hongwei, C.3    Yuanman, H.4    Linlin, J.5    Yuting, F.6    Wen, W.7    Haifeng, W.8
  • 69
    • 84857975353 scopus 로고    scopus 로고
    • A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data
    • Wilson, B.T., Lister, A.J., and Riemann, R.I. 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For. Ecol. Manage. 271: 182–198. doi:10.1016/j.foreco.2012.02.002.
    • (2012) For. Ecol. Manage , vol.271 , pp. 182-198
    • Wilson, B.T.1    Lister, A.J.2    Riemann, R.I.3
  • 70
    • 84872156499 scopus 로고    scopus 로고
    • Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage
    • Wilson, B.T., Woodall, C.W., and Griffith, D.M. 2013. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Manage. 8(1): 1. doi:10.1186/1750-0680-8-1.
    • (2013) Carbon Balance Manage , vol.8 , Issue.1 , pp. 1
    • Wilson, B.T.1    Woodall, C.W.2    Griffith, D.M.3
  • 71
    • 84875799497 scopus 로고    scopus 로고
    • Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China. Sci
    • PMID:23542479
    • Wu, Z., He, H.S., Liu, Z., and Liang, Y. 2013. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China. Sci. Total Environ. 454–455: 30–39. doi:10.1016/j.scitotenv.2013.02.058. PMID:23542479.
    • (2013) Total Environ , vol.454 , Issue.455 , pp. 30-39
    • Wu, Z.1    He, H.S.2    Liu, Z.3    Liang, Y.4
  • 73
    • 39049099689 scopus 로고    scopus 로고
    • Monitoring forest phenophases of Northeast China based on MODIS NDVI Data
    • Yu, X., and Zhuang, D. 2006. Monitoring forest phenophases of Northeast China based on MODIS NDVI Data. Resources Science, 28(4): 111–117.
    • (2006) Resources Science , vol.28 , Issue.4 , pp. 111-117
    • Yu, X.1    Zhuang, D.2
  • 74
    • 84892495204 scopus 로고    scopus 로고
    • Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure
    • Zald, H.S.J., Ohmann, J.L., Roberts, H.M., Gregory, M.J., Henderson, E.B., McGaughey, R.J., and Braaten, J. 2014. Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sens. Environ. 143: 26–38. doi:10.1016/j.rse.2013.12.013.
    • (2014) Remote Sens. Environ , vol.143 , pp. 26-38
    • Zald, H.S.J.1    Ohmann, J.L.2    Roberts, H.M.3    Gregory, M.J.4    Henderson, E.B.5    McGaughey, R.J.6    Braaten, J.7
  • 75
    • 84956704477 scopus 로고    scopus 로고
    • Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
    • Zald, H.S.J., Wulder, M.A., White, J.C., Hilker, T., Hermosilla, T., Hobart, G.W., and Coops, N.C. 2016. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens. Environ. 176: 188–201. doi: 10.1016/j.rse.2016.01.015.
    • (2016) Remote Sens. Environ , vol.176 , pp. 188-201
    • Zald, H.S.J.1    Wulder, M.A.2    White, J.C.3    Hilker, T.4    Hermosilla, T.5    Hobart, G.W.6    Coops, N.C.7
  • 76
    • 84881448320 scopus 로고    scopus 로고
    • Remotely sensed forest structural complexity predicts multi-species occurrence at the landscape scale
    • Zellweger, F., Braunisch, V., Baltensweiler, A., and Bollmann, K. 2013. Remotely sensed forest structural complexity predicts multi-species occurrence at the landscape scale. For. Ecol. Manage. 307: 303–312. doi:10.1016/j.foreco.2013.07.023.
    • (2013) For. Ecol. Manage , vol.307 , pp. 303-312
    • Zellweger, F.1    Braunisch, V.2    Baltensweiler, A.3    Bollmann, K.4
  • 77
    • 68149181066 scopus 로고    scopus 로고
    • Integration of satellite imagery and forest inventory in mapping dominant and associated species at a regional scale
    • PMID:19488811
    • Zhang, Y., He, H.S., Dijak, W.D., Yang, J., Shifley, S.R., and Palik, B.J. 2009. Integration of satellite imagery and forest inventory in mapping dominant and associated species at a regional scale. Environ. Manage. 44(2): 312–323. doi:10.1007/s00267-009-9307-7. PMID:19488811.
    • (2009) Environ. Manage , vol.44 , Issue.2 , pp. 312-323
    • Zhang, Y.1    He, H.S.2    Dijak, W.D.3    Yang, J.4    Shifley, S.R.5    Palik, B.J.6
  • 78
    • 84891690842 scopus 로고    scopus 로고
    • Forest biomass mapping of Northeastern China using GLAS and MODIS data
    • Zhang, Y., Liang, S., and Sun, G. 2014. Forest biomass mapping of Northeastern China using GLAS and MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(1): 140–152. doi:10.1109/JSTARS.2013.2256883.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.7 , Issue.1 , pp. 140-152
    • Zhang, Y.1    Liang, S.2    Sun, G.3
  • 79
    • 84924724200 scopus 로고    scopus 로고
    • Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS
    • Zhu, X., and Liu, D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 102: 222–231. doi:10.1016/j.isprsjprs.2014.08.014.
    • (2015) J. Photogramm. Remote Sens , vol.102 , pp. 222-231
    • Zhu, X.1    Liu, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.