메뉴 건너뛰기




Volumn 13, Issue 4, 2018, Pages

Estimating plant distance in maize using unmanned aerial vehicle (UAV)

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURAL WORKER; ALGORITHM; ARTICLE; HARVEST; HUMAN; HUMAN EXPERIMENT; IMAGERY; MAIZE; NONHUMAN; QUANTITATIVE ANALYSIS; AGRICULTURE; AIRCRAFT; CROP; DEVICES; GEOGRAPHIC INFORMATION SYSTEM; GROWTH, DEVELOPMENT AND AGING; PHYSIOLOGY; PROCEDURES; REMOTE SENSING; SPATIAL ANALYSIS; STATISTICS; THEORETICAL MODEL;

EID: 85045879479     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0195223     Document Type: Article
Times cited : (19)

References (27)
  • 1
    • 0344531544 scopus 로고
    • Effects of within-row plant uniformity on grain yield of maize
    • Muldoon JF, Daynard TB. Effects of within-row plant uniformity on grain yield of maize. Can. J. Plant Sci. 1981; 61: 887–894. https://doi.org/10.4141/cjps81-132
    • (1981) Can. J. Plant Sci. , vol.61 , pp. 887-894
    • Muldoon, J.F.1    Daynard, T.B.2
  • 4
    • 84907046211 scopus 로고    scopus 로고
    • Full-season retrospectives on causes of plant-to-plant variability in maize grain yield response to nitrogen and tillage
    • Kovács P, Vyn TJ. Full-season retrospectives on causes of plant-to-plant variability in maize grain yield response to nitrogen and tillage. Agronomy. 2014; 106: 1746–1757. https://doi.org/10.2134/agronj14. 0173
    • (2014) Agronomy , vol.106 , pp. 1746-1757
    • Kovács, P.1    Vyn, T.J.2
  • 5
    • 84903199201 scopus 로고    scopus 로고
    • Optimizing corn seeding rates using a field’s corn suitability rating
    • Woli KP, Burras CL, Abendroth LJ, Elmore RW. Optimizing corn seeding rates using a field’s corn suitability rating. Agronomy. 2014; 106: 1523–1532. https://doi.org/10.2134/agronj14.0054
    • (2014) Agronomy , vol.106 , pp. 1523-1532
    • Woli, K.P.1    Burras, C.L.2    Abendroth, L.J.3    Elmore, R.W.4
  • 7
    • 0029110322 scopus 로고
    • Color indices for weed identification under various soil, residue, and lighting conditions
    • Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE. 1995; 38, 259–269.
    • (1995) Transactions of The ASAE , vol.38 , pp. 259-269
    • Woebbecke, D.M.1    Meyer, G.E.2    Von Bargen, K.3    Mortensen, D.A.4
  • 8
    • 85021163000 scopus 로고    scopus 로고
    • Digital counts of maize plants by unmanned aerial vehicles (UAVs)
    • Gnädinger F, Schmidhalter U. Digital counts of maize plants by unmanned aerial vehicles (UAVs). Remote Sens. 2017; 9, 544. https://doi.org/10.3390/rs9060544
    • (2017) Remote Sens , vol.9 , pp. 544
    • Gnädinger, F.1    Schmidhalter, U.2
  • 9
    • 84874595926 scopus 로고    scopus 로고
    • Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management
    • PMID: 23483997
    • Torres-Sánchez J, López-Granados F, De Castro AI, Manuel Peña-Barragán J. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One. 2013; 8: e58210. https://doi.org/10.1371/journal.pone.0058210 PMID: 23483997
    • (2013) PLoS One , vol.8 , pp. e58210
    • Torres-Sánchez, J.1    López-Granados, F.2    De Castro, A.I.3    Manuel Peña-Barragán, J.4
  • 10
  • 11
    • 84898075096 scopus 로고    scopus 로고
    • Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments
    • Cammarano D, Fritzgerald GJ, Casa R, Basso B. Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments. Remote Sens. 2014; 6: 2827–2844. https://doi.org/10.3390/rs6042827
    • (2014) Remote Sens , vol.6 , pp. 2827-2844
    • Cammarano, D.1    Fritzgerald, G.J.2    Casa, R.3    Basso, B.4
  • 12
    • 33644854567 scopus 로고    scopus 로고
    • Automated crop and weed monitoring in widely spaced cereals
    • Hague T, Tillett ND, Wheeler H. Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture. 2006; 7: 21–32. https://doi.org/10.1007/s11119-005-6787-1
    • (2006) Precision Agriculture , vol.7 , pp. 21-32
    • Hague, T.1    Tillett, N.D.2    Wheeler, H.3
  • 13
    • 79956105771 scopus 로고    scopus 로고
    • Crop-row detection algorithm based on Random Hough Transformation
    • Ji R, Qi L. Crop-row detection algorithm based on Random Hough Transformation. Math Comput Model. 2011; 54: 1016–1020. https://doi.org/10.1016/j.mcm.2010.11.030
    • (2011) Math Comput Model , vol.54 , pp. 1016-1020
    • Ji, R.1    Qi, L.2
  • 15
    • 0000961811 scopus 로고
    • Real-time tracking of plant rows using a Hough transform
    • Marchant JA, Brivot R. Real-time tracking of plant rows using a Hough transform. Real-Time Imaging, 1995; 1: 363–371. https://doi.org/10.1006/rtim.1995.1036
    • (1995) Real-Time Imaging , vol.1 , pp. 363-371
    • Marchant, J.A.1    Brivot, R.2
  • 16
    • 33745029741 scopus 로고    scopus 로고
    • Application of the Hough transform for seed row localisation using machine vision
    • Leemans V, Destain MF. Application of the Hough transform for seed row localisation using machine vision. Biosyst Eng. 2006; 94: 325–336. https://doi.org/10.1016/j.biosystemseng.2006.03.014
    • (2006) Biosyst Eng , vol.94 , pp. 325-336
    • Leemans, V.1    Destain, M.F.2
  • 17
    • 33747992562 scopus 로고
    • A new curve detection method: Randomized Hough transform (RHT)
    • Xu L, Oja E, Kultanen P. A new curve detection method: randomized Hough transform (RHT). Pattern Recognit Lett. 1990; 11: 331–338. https://doi.org/10.1016/0167-8655(90)90042-Z
    • (1990) Pattern Recognit Lett , vol.11 , pp. 331-338
    • Xu, L.1    Oja, E.2    Kultanen, P.3
  • 18
    • 0031166613 scopus 로고    scopus 로고
    • Building perspective models to guide a row crop navigation vehicle
    • Pla F, Sanchiz JM, Marchant JA, Brivot R. Building perspective models to guide a row crop navigation vehicle. Image Vision Comput. 1997; 15: 465–473. https://doi.org/10.1016/S0262-8856(96)01147-X
    • (1997) Image Vision Comput , vol.15 , pp. 465-473
    • Pla, F.1    Sanchiz, J.M.2    Marchant, J.A.3    Brivot, R.4
  • 19
    • 84959883480 scopus 로고    scopus 로고
    • Wheat rows detection at the early growth stage based on Hough transform and vanishing point
    • Jiang G, Wang X, Wang Z, Liu H. Wheat rows detection at the early growth stage based on Hough transform and vanishing point. Comput Electron Agric. 2016; 123: 211–223. https://doi.org/10.1016/j.compag.2016.02.002
    • (2016) Comput Electron Agric , vol.123 , pp. 211-223
    • Jiang, G.1    Wang, X.2    Wang, Z.3    Liu, H.4
  • 20
    • 0037327012 scopus 로고    scopus 로고
    • Determination of crop rows by image analysis without segmentation
    • Søgaard HT, Olsen HJ. Determination of crop rows by image analysis without segmentation. Comput Electron Agric. 2003; 38: 141–158. https://doi.org/10.1016/S0168-1699(02)00140-0
    • (2003) Comput Electron Agric , vol.38 , pp. 141-158
    • Søgaard, H.T.1    Olsen, H.J.2
  • 21
    • 16244394040 scopus 로고    scopus 로고
    • A stereovision-based crop row detection method for tractor-automated guidance
    • Kise M, Zhang Q, Más FR. A stereovision-based crop row detection method for tractor-automated guidance. Biosyst Eng. 2005; 90: 357–367. https://doi.org/10.1016/j.biosystemseng.2004.12.008
    • (2005) Biosyst Eng , vol.90 , pp. 357-367
    • Kise, M.1    Zhang, Q.2    Más, F.R.3
  • 22
    • 68049093816 scopus 로고    scopus 로고
    • Corn plant sensing using real-time stereo vision
    • Jin J, Tang L. Corn plant sensing using real-time stereo vision. J Field Robot. 2009; 26: 591–608. https://doi.org/10.1002/rob.20293
    • (2009) J Field Robot , vol.26 , pp. 591-608
    • Jin, J.1    Tang, L.2
  • 23
    • 84937829673 scopus 로고    scopus 로고
    • High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials
    • Díaz-Varela RA, de la Rosa R, León L, Zarco-Tejada PJ. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Remote Sens. 2015; 7: 4213–4232. https://doi.org/10.3390/rs70404213
    • (2015) Remote Sens , vol.7 , pp. 4213-4232
    • Díaz-Varela, R.A.1    de la Rosa, R.2    León, L.3    Zarco-Tejada, P.J.4
  • 24
    • 84926331997 scopus 로고    scopus 로고
    • Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture
    • Matese A, Toscano P, Di Gennaro SF, Genesio L, Vaccari FP, Primicerio J, et al. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015; 7: 2971–2990. https://doi.org/10.3390/rs70302971
    • (2015) Remote Sens , vol.7 , pp. 2971-2990
    • Matese, A.1    Toscano, P.2    Di Gennaro, S.F.3    Genesio, L.4    Vaccari, F.P.5    Primicerio, J.6
  • 25
    • 84937860942 scopus 로고    scopus 로고
    • Evaluating multispectral images and vegetation indices for precision farming applications from UAV images
    • Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015; 7: 4026–4047. https://doi.org/10.3390/rs70404026
    • (2015) Remote Sens , vol.7 , pp. 4026-4047
    • Candiago, S.1    Remondino, F.2    De Giglio, M.3    Dubbini, M.4    Gattelli, M.5
  • 26
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • Meyer GE, Neto JC. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric. 2008; 63: 282–293. https://doi.org/10.1016/j.compag.2008.03.009
    • (2008) Comput Electron Agric , vol.63 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.