메뉴 건너뛰기




Volumn 38, Issue 1, 2018, Pages

Cloud Detection of ZY-3 Satellite Remote Sensing Images Based on Deep Learning

Author keywords

Cloud detection; Deep learning; Principal component analysis; Remote sensing; ZY 3 satellite image

Indexed keywords

IMAGE ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SATELLITES;

EID: 85045763045     PISSN: 02532239     EISSN: None     Source Type: Journal    
DOI: 10.3788/AOS201838.0128005     Document Type: Article
Times cited : (35)

References (16)
  • 1
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in Landsat imagery
    • Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83-94.
    • (2012) Remote Sensing of Environment , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2
  • 2
    • 84903937476 scopus 로고    scopus 로고
    • Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change
    • Zhu Z, Woodcock C E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014, 152: 217-234.
    • (2014) Remote Sensing of Environment , vol.152 , pp. 217-234
    • Zhu, Z.1    Woodcock, C.E.2
  • 3
    • 84920682125 scopus 로고    scopus 로고
    • Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing
    • Hughes M J, Hayes D J. Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing[J]. Remote Sensing, 2014, 6(6): 4907-4926.
    • (2014) Remote Sensing , vol.6 , Issue.6 , pp. 4907-4926
    • Hughes, M.J.1    Hayes, D.J.2
  • 4
    • 84964306850 scopus 로고    scopus 로고
    • High spatial resolution remote sensing image classification based on deep learning
    • Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
    • (2016) Acta Optica Sinica , vol.36 , Issue.4
    • Liu, D.W.1    Han, L.2    Han, X.Y.3
  • 5
    • 85100289948 scopus 로고    scopus 로고
    • Segmentation of high-resolution remote sensing image combining phase consistency with watershed transformation
    • Chen Y, Fan R S, Wang J X, et al. Segmentation of high-resolution remote sensing image combining phase consistency with watershed transformation[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092803.
    • (2017) Laser & Optoelectronics Progress , vol.54 , Issue.9
    • Chen, Y.1    Fan, R.S.2    Wang, J.X.3
  • 7
    • 84904052317 scopus 로고    scopus 로고
    • Real-time automatic cloud detection during the process of taking aerial photographs
    • Gao X J, Wan Y C, Zheng S Y, et al. Real-time automatic cloud detection during the process of taking aerial photographs[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1909-1913.
    • (2014) Spectroscopy and Spectral Analysis , vol.34 , Issue.7 , pp. 1909-1913
    • Gao, X.J.1    Wan, Y.C.2    Zheng, S.Y.3
  • 9
    • 33745615125 scopus 로고    scopus 로고
    • Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
    • Yu Q, Gong P, Clinton N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(7): 799-811.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , Issue.7 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3
  • 10
    • 84901844515 scopus 로고    scopus 로고
    • Transform-invariant PCA: A unified approach to fully automatic face alignment, representation, and recognition
    • Deng W, Hu J, Lu J, et al. Transform-invariant PCA: A unified approach to fully automatic face alignment, representation, and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1275-1284.
    • (2014) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.36 , Issue.6 , pp. 1275-1284
    • Deng, W.1    Hu, J.2    Lu, J.3
  • 11
    • 85050633345 scopus 로고    scopus 로고
    • High resolution image classification method combining with minimum noise fraction rotation transform and convolution neural network
    • Chen Y, Fan R S, Wang J X, et al. High resolution image classification method combining with minimum noise fraction rotation transform and convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102801.
    • (2017) Laser & Optoelectronics Progress , vol.54 , Issue.10
    • Chen, Y.1    Fan, R.S.2    Wang, J.X.3
  • 13
    • 85067565710 scopus 로고    scopus 로고
    • Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
    • Lee C Y, Gallagher P W, Tu Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree[C]. Artificial Intelligence and Statistics, 2016: 464-472.
    • (2016) Artificial Intelligence and Statistics , pp. 464-472
    • Lee, C.Y.1    Gallagher, P.W.2    Tu, Z.3
  • 16
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • Foody G M, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM[J]. Remote Sensing of Environment, 2006, 103(2): 179-189.
    • (2006) Remote Sensing of Environment , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.