메뉴 건너뛰기




Volumn 36, Issue 4, 2016, Pages

High spatial resolution remote sensing image classification based on deep learning

Author keywords

Deep belief networks; Deep learning; High spatial resolution; Nonsubsampled contourlet transform; Remote sensing; Remote sensing image classification; Texture

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE ENHANCEMENT; IMAGE RECONSTRUCTION; IMAGE RESOLUTION; IMAGE TEXTURE; INFORMATION USE; REMOTE SENSING; SUPPORT VECTOR MACHINES; TEXTURES;

EID: 84964306850     PISSN: 02532239     EISSN: None     Source Type: Journal    
DOI: 10.3788/AOS201636.0428001     Document Type: Article
Times cited : (95)

References (25)
  • 1
    • 84890989467 scopus 로고    scopus 로고
    • Robust autodual morphological profiles for the classification of high-resolution satellite images
    • Luo B, Zhang L. Robust autodual morphological profiles for the classification of high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1451-1462.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.2 , pp. 1451-1462
    • Luo, B.1    Zhang, L.2
  • 2
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
    • Pacifici F, Chini M, Emery W J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification[J]. Remote Sensing of Environment, 2009, 113(6): 1276-1292.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 3
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
    • Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257-272.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 4
    • 84926320518 scopus 로고    scopus 로고
    • Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image
    • Liu C, Hong L, Chen J, et al. Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image[J]. Journal of Remote Sensing, 2015, 19(2): 228-239.
    • (2015) Journal of Remote Sensing , vol.19 , Issue.2 , pp. 228-239
    • Liu, C.1    Hong, L.2    Chen, J.3
  • 7
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 8
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing
    • Yu D, Deng L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.
    • (2011) IEEE Signal Processing Magazine , vol.28 , Issue.1 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 9
    • 84892142922 scopus 로고    scopus 로고
    • The learning machines
    • Jones N. The learning machines[J]. Nature, 2014, 505(7842): 146-148.
    • (2014) Nature , vol.505 , Issue.7842 , pp. 146-148
    • Jones, N.1
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 12
    • 84902079124 scopus 로고    scopus 로고
    • Compressed texton based high resolution remote sensing image classification
    • Jin Jing, Zou Zhengrong, Tao Chao. Compressed texton based high resolution remote sensing image classification[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 493-499.
    • (2014) Acta Geodaetica et Cartographica Sinica , vol.43 , Issue.5 , pp. 493-499
    • Jin, J.1    Zou, Z.2    Tao, C.3
  • 13
    • 28944432472 scopus 로고    scopus 로고
    • The Contourlet transform: An efficient directional multiresolution image representation
    • Do M N, Vetterli M. The Contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.12 , pp. 2091-2106
    • Do, M.N.1    Vetterli, M.2
  • 14
    • 33749161371 scopus 로고    scopus 로고
    • The nonsubsampled contourlet transform: Theory, design, and applications
    • Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: Theory, design, and applications[J]. Image Processing, IEEE Transactions on, 2006, 15(10): 3089-3101.
    • (2006) Image Processing, IEEE Transactions on , vol.15 , Issue.10 , pp. 3089-3101
    • Cunha, A.L.1    Zhou, J.2    Do, M.N.3
  • 16
    • 70350504000 scopus 로고    scopus 로고
    • A new adaptive image denoising method based on the nonsubsampled Contourlet transform algorithm
    • Wu Xiaoyue, Guo Baolong, Tang Lu, et al. A new adaptive image denoising method based on the nonsubsampled Contourlet transform algorithm[J]. Acta Optica Sinica, 2009, 29(8): 2147-2152.
    • (2009) Acta Optica Sinica , vol.29 , Issue.8 , pp. 2147-2152
    • Wu, X.1    Guo, B.2    Tang, L.3
  • 17
    • 84922671627 scopus 로고    scopus 로고
    • A method of super-resolution reconstruction for remote sensing image based on nonsubsampled Contourlet transform
    • Zhou Jinghong, Zhou Cui, Zhu Jianjun, et al. A method of super-resolution reconstruction for remote sensing image based on nonsubsampled Contourlet transform[J]. Acta Optica Sinica, 2015, 35(1): 0110001.
    • (2015) Acta Optica Sinica , vol.35 , Issue.1
    • Zhou, J.1    Zhou, C.2    Zhu, J.3
  • 18
    • 84874456004 scopus 로고    scopus 로고
    • Rotation-invariant texture image retrieval algorithm based on non-subsampled Contourlet transform
    • He Yongcong, Liu Wenbo, Zhang Gong, et al. Rotation-invariant texture image retrieval algorithm based on non-subsampled Contourlet transform[J]. Journal of Image and Graphics, 2011, 16(1): 79-83.
    • (2011) Journal of Image and Graphics , vol.16 , Issue.1 , pp. 79-83
    • He, Y.1    Liu, W.2    Zhang, G.3
  • 19
    • 84897876080 scopus 로고    scopus 로고
    • Method for improving reconstructed image quality of digital hologram based on SRAD and NSCT
    • Wu Yiquan, Yin Jun, Zhu Li, et al. Method for improving reconstructed image quality of digital hologram based on SRAD and NSCT[J]. Chinese J Lasers, 2014, 41(2): 0209024.
    • (2014) Chinese J Lasers , vol.41 , Issue.2
    • Wu, Y.1    Yin, J.2    Zhu, L.3
  • 20
    • 85043650051 scopus 로고    scopus 로고
    • Fase image recognition method based on the NSCT and bionic pattern
    • Zhou Liangji, Li Qingwu, Huo Guanying, et al. Fase image recognition method based on the NSCT and bionic pattern[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031001.
    • (2015) Laser & Optoelectronics Progress , vol.52 , Issue.3
    • Zhou, L.1    Li, Q.2    Huo, G.3
  • 21
    • 85044290698 scopus 로고    scopus 로고
    • Study on fusion of visual and infrared images based on NSCT
    • Chen Musheng, Cai Zhishan. Study on fusion of visual and infrared images based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.
    • (2015) Laser & Optoelectronics Progress , vol.52 , Issue.6
    • Chen, M.1    Cai, Z.2
  • 22
    • 84902285531 scopus 로고    scopus 로고
    • Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery
    • Wuhan: Wuhan University
    • Huang Xin. Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery[D]. Wuhan: Wuhan University, 2009: 71-76.
    • (2009) , pp. 71-76
    • Huang, X.1
  • 23
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 24
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631-1649.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Roux, N.L.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.