-
1
-
-
84890989467
-
Robust autodual morphological profiles for the classification of high-resolution satellite images
-
Luo B, Zhang L. Robust autodual morphological profiles for the classification of high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1451-1462.
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, Issue.2
, pp. 1451-1462
-
-
Luo, B.1
Zhang, L.2
-
2
-
-
64549105242
-
A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
-
Pacifici F, Chini M, Emery W J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification[J]. Remote Sensing of Environment, 2009, 113(6): 1276-1292.
-
(2009)
Remote Sensing of Environment
, vol.113
, Issue.6
, pp. 1276-1292
-
-
Pacifici, F.1
Chini, M.2
Emery, W.J.3
-
3
-
-
84871748730
-
An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
-
Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257-272.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, Issue.1
, pp. 257-272
-
-
Huang, X.1
Zhang, L.2
-
4
-
-
84926320518
-
Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image
-
Liu C, Hong L, Chen J, et al. Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image[J]. Journal of Remote Sensing, 2015, 19(2): 228-239.
-
(2015)
Journal of Remote Sensing
, vol.19
, Issue.2
, pp. 228-239
-
-
Liu, C.1
Hong, L.2
Chen, J.3
-
7
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
8
-
-
85032782045
-
Deep learning and its applications to signal and information processing
-
Yu D, Deng L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.
-
(2011)
IEEE Signal Processing Magazine
, vol.28
, Issue.1
, pp. 145-154
-
-
Yu, D.1
Deng, L.2
-
9
-
-
84892142922
-
The learning machines
-
Jones N. The learning machines[J]. Nature, 2014, 505(7842): 146-148.
-
(2014)
Nature
, vol.505
, Issue.7842
, pp. 146-148
-
-
Jones, N.1
-
10
-
-
84885069866
-
Deep learning: Yesterday, today and tomorrow
-
Yu Kai, Jia Lei, Chen Yuqiang, et al. Deep learning: Yesterday, today and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
-
(2013)
Journal of Computer Research and Development
, vol.50
, Issue.9
, pp. 1799-1804
-
-
Yu, K.1
Jia, L.2
Chen, Y.3
-
11
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton G. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.1
-
12
-
-
84902079124
-
Compressed texton based high resolution remote sensing image classification
-
Jin Jing, Zou Zhengrong, Tao Chao. Compressed texton based high resolution remote sensing image classification[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 493-499.
-
(2014)
Acta Geodaetica et Cartographica Sinica
, vol.43
, Issue.5
, pp. 493-499
-
-
Jin, J.1
Zou, Z.2
Tao, C.3
-
13
-
-
28944432472
-
The Contourlet transform: An efficient directional multiresolution image representation
-
Do M N, Vetterli M. The Contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.12
, pp. 2091-2106
-
-
Do, M.N.1
Vetterli, M.2
-
14
-
-
33749161371
-
The nonsubsampled contourlet transform: Theory, design, and applications
-
Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: Theory, design, and applications[J]. Image Processing, IEEE Transactions on, 2006, 15(10): 3089-3101.
-
(2006)
Image Processing, IEEE Transactions on
, vol.15
, Issue.10
, pp. 3089-3101
-
-
Cunha, A.L.1
Zhou, J.2
Do, M.N.3
-
15
-
-
33749604320
-
Nonsubsampled contourlet transform: Construction and application in enhancement
-
IEEE
-
Zhou J, Cunha A L, Do M N. Nonsubsampled contourlet transform: Construction and application in enhancement[C]. Image Processing, 2005. ICIP 2005. IEEE International Conference on, IEEE, 2005, 1: 469-472.
-
(2005)
IEEE International Conference on Image Processing, 2005. ICIP 2005
, vol.1
, pp. 469-472
-
-
Zhou, J.1
Cunha, A.L.2
Do, M.N.3
-
16
-
-
70350504000
-
A new adaptive image denoising method based on the nonsubsampled Contourlet transform algorithm
-
Wu Xiaoyue, Guo Baolong, Tang Lu, et al. A new adaptive image denoising method based on the nonsubsampled Contourlet transform algorithm[J]. Acta Optica Sinica, 2009, 29(8): 2147-2152.
-
(2009)
Acta Optica Sinica
, vol.29
, Issue.8
, pp. 2147-2152
-
-
Wu, X.1
Guo, B.2
Tang, L.3
-
17
-
-
84922671627
-
A method of super-resolution reconstruction for remote sensing image based on nonsubsampled Contourlet transform
-
Zhou Jinghong, Zhou Cui, Zhu Jianjun, et al. A method of super-resolution reconstruction for remote sensing image based on nonsubsampled Contourlet transform[J]. Acta Optica Sinica, 2015, 35(1): 0110001.
-
(2015)
Acta Optica Sinica
, vol.35
, Issue.1
-
-
Zhou, J.1
Zhou, C.2
Zhu, J.3
-
18
-
-
84874456004
-
Rotation-invariant texture image retrieval algorithm based on non-subsampled Contourlet transform
-
He Yongcong, Liu Wenbo, Zhang Gong, et al. Rotation-invariant texture image retrieval algorithm based on non-subsampled Contourlet transform[J]. Journal of Image and Graphics, 2011, 16(1): 79-83.
-
(2011)
Journal of Image and Graphics
, vol.16
, Issue.1
, pp. 79-83
-
-
He, Y.1
Liu, W.2
Zhang, G.3
-
19
-
-
84897876080
-
Method for improving reconstructed image quality of digital hologram based on SRAD and NSCT
-
Wu Yiquan, Yin Jun, Zhu Li, et al. Method for improving reconstructed image quality of digital hologram based on SRAD and NSCT[J]. Chinese J Lasers, 2014, 41(2): 0209024.
-
(2014)
Chinese J Lasers
, vol.41
, Issue.2
-
-
Wu, Y.1
Yin, J.2
Zhu, L.3
-
20
-
-
85043650051
-
Fase image recognition method based on the NSCT and bionic pattern
-
Zhou Liangji, Li Qingwu, Huo Guanying, et al. Fase image recognition method based on the NSCT and bionic pattern[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031001.
-
(2015)
Laser & Optoelectronics Progress
, vol.52
, Issue.3
-
-
Zhou, L.1
Li, Q.2
Huo, G.3
-
21
-
-
85044290698
-
Study on fusion of visual and infrared images based on NSCT
-
Chen Musheng, Cai Zhishan. Study on fusion of visual and infrared images based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.
-
(2015)
Laser & Optoelectronics Progress
, vol.52
, Issue.6
-
-
Chen, M.1
Cai, Z.2
-
22
-
-
84902285531
-
Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery
-
Wuhan: Wuhan University
-
Huang Xin. Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery[D]. Wuhan: Wuhan University, 2009: 71-76.
-
(2009)
, pp. 71-76
-
-
Huang, X.1
-
23
-
-
84861125212
-
A practical guide to training restricted Boltzmann machines
-
Hinton G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926.
-
(2010)
Momentum
, vol.9
, Issue.1
, pp. 926
-
-
Hinton, G.1
-
24
-
-
45749110924
-
Representational power of restricted Boltzmann machines and deep belief networks
-
Roux N L, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631-1649.
-
(2008)
Neural Computation
, vol.20
, Issue.6
, pp. 1631-1649
-
-
Roux, N.L.1
Bengio, Y.2
-
25
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 10(1): 1-40.
-
(2009)
Journal of Machine Learning Research
, vol.10
, Issue.1
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
|