메뉴 건너뛰기




Volumn 10, Issue 13, 2018, Pages 10627-10633

Composition-Dependent Functionality of Copper Vanadate Photoanodes

Author keywords

copper vanadate; photoanode; photoelectrochemistry; surface states; transient photocurrent analysis; water oxidation

Indexed keywords

CATALYST ACTIVITY; CHARGE TRANSFER; COPPER COMPOUNDS; ELECTROCHEMISTRY; LIGHT ABSORPTION; METALS; PHOTOELECTROCHEMICAL CELLS; REACTIVE SPUTTERING; SPUTTER DEPOSITION; SURFACE STATES; TRANSIENT ANALYSIS;

EID: 85044919424     PISSN: 19448244     EISSN: 19448252     Source Type: Journal    
DOI: 10.1021/acsami.8b02977     Document Type: Article
Times cited : (73)

References (33)
  • 1
    • 84979927797 scopus 로고    scopus 로고
    • Semiconducting Materials for Photoelectrochemical Energy Conversion
    • Sivula, K.; van de Krol, R. Semiconducting Materials for Photoelectrochemical Energy Conversion. Nat. Rev. Mater. 2016, 1, 15010, 10.1038/natrevmats.2015.10
    • (2016) Nat. Rev. Mater. , vol.1 , pp. 15010
    • Sivula, K.1    Van De Krol, R.2
  • 3
    • 85031282223 scopus 로고    scopus 로고
    • Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments
    • Shinde, A.; Suram, S. K.; Yan, Q.; Zhou, L.; Singh, A. K.; Yu, J.; Persson, K. A.; Neaton, J. B.; Gregoire, J. M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Lett. 2017, 2, 2307-2312, 10.1021/acsenergylett.7b00607
    • (2017) ACS Energy Lett. , vol.2 , pp. 2307-2312
    • Shinde, A.1    Suram, S.K.2    Yan, Q.3    Zhou, L.4    Singh, A.K.5    Yu, J.6    Persson, K.A.7    Neaton, J.B.8    Gregoire, J.M.9
  • 4
    • 57649159482 scopus 로고    scopus 로고
    • Heterogeneous Photocatalyst Materials for Water Splitting
    • Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253-278, 10.1039/B800489G
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 253-278
    • Kudo, A.1    Miseki, Y.2
  • 5
    • 84902144692 scopus 로고    scopus 로고
    • Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting
    • Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520-7535, 10.1039/C3CS60378D
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7520-7535
    • Hisatomi, T.1    Kubota, J.2    Domen, K.3
  • 6
    • 84961368233 scopus 로고    scopus 로고
    • Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting
    • Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J.-W.; Kubota, J.; Domen, K.; Lee, J. S. Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting. Sci. Rep. 2013, 3, 2681, 10.1038/srep02681
    • (2013) Sci. Rep. , vol.3 , pp. 2681
    • Kim, J.Y.1    Magesh, G.2    Youn, D.H.3    Jang, J.-W.4    Kubota, J.5    Domen, K.6    Lee, J.S.7
  • 7
    • 84896735953 scopus 로고    scopus 로고
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990-994, 10.1126/science.1246913
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.-S.2
  • 8
    • 84975886688 scopus 로고    scopus 로고
    • 4 for Photoelectrochemical Water Oxidation
    • 4 for Photoelectrochemical Water Oxidation. Acc. Chem. Res. 2016, 49, 1121-1129, 10.1021/acs.accounts.6b00045
    • (2016) Acc. Chem. Res. , vol.49 , pp. 1121-1129
    • Lhermitte, C.R.1    Bartlett, B.M.2
  • 11
    • 84876586843 scopus 로고    scopus 로고
    • Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials
    • Toroker, M. C.; Carter, E. A. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials. J. Mater. Chem. A 2013, 1, 2474-2484, 10.1039/c2ta00816e
    • (2013) J. Mater. Chem. A , vol.1 , pp. 2474-2484
    • Toroker, M.C.1    Carter, E.A.2
  • 16
    • 85034066011 scopus 로고    scopus 로고
    • 26 for Use as Photoanodes for Solar Water Splitting
    • 26 for Use as Photoanodes for Solar Water Splitting. Chem. Mater. 2017, 29, 9472-9479, 10.1021/acs.chemmater.7b03587
    • (2017) Chem. Mater. , vol.29 , pp. 9472-9479
    • Lumley, M.A.1    Choi, K.-S.2
  • 18
    • 85044946600 scopus 로고    scopus 로고
    • Quantification of the Loss Mechanisms in Emerging Water Splitting Photoanodes Through Empirical Extraction of the Spatial Charge Collection Efficiency
    • DOI: 10.1039/C7EE03486E
    • Segev, G.; Jiang, C.-M.; Cooper, J. K.; Eichoorn, J.; Toma, F. M.; Sharp, I. D. Quantification of the Loss Mechanisms in Emerging Water Splitting Photoanodes Through Empirical Extraction of the Spatial Charge Collection Efficiency. Energy Environ. Sci. 2018, DOI: 10.1039/C7EE03486E.
    • (2018) Energy Environ. Sci.
    • Segev, G.1    Jiang, C.-M.2    Cooper, J.K.3    Eichoorn, J.4    Toma, F.M.5    Sharp, I.D.6
  • 19
    • 84878062541 scopus 로고    scopus 로고
    • Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis
    • Sivula, K. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. J. Phys. Chem. Lett. 2013, 4, 1624-1633, 10.1021/jz4002983
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 1624-1633
    • Sivula, K.1
  • 20
    • 84876263966 scopus 로고    scopus 로고
    • Energetics and Kinetics of Light-Driven Oxygen Evolution at Semiconductor Electrodes: The Example of Hematite
    • Peter, L. M. Energetics and Kinetics of Light-Driven Oxygen Evolution at Semiconductor Electrodes: The Example of Hematite. J. Solid State Electrochem. 2013, 17, 315-326, 10.1007/s10008-012-1957-3
    • (2013) J. Solid State Electrochem. , vol.17 , pp. 315-326
    • Peter, L.M.1
  • 21
    • 84857816685 scopus 로고    scopus 로고
    • Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
    • Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water Oxidation at Hematite Photoelectrodes: The Role of Surface States. J. Am. Chem. Soc. 2012, 134, 4294-4302, 10.1021/ja210755h
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 4294-4302
    • Klahr, B.1    Gimenez, S.2    Fabregat-Santiago, F.3    Hamann, T.4    Bisquert, J.5
  • 25
    • 84936158860 scopus 로고    scopus 로고
    • Semiconducting Transition Metal Oxides
    • Lany, S. Semiconducting Transition Metal Oxides. J. Phys.: Condens. Matter 2015, 27, 283203, 10.1088/0953-8984/27/28/283203
    • (2015) J. Phys.: Condens. Matter , vol.27
    • Lany, S.1
  • 26
    • 0742306500 scopus 로고    scopus 로고
    • 2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements
    • 2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements. J. Am. Chem. Soc. 2004, 126, 1290-1298, 10.1021/ja0388764
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 1290-1298
    • Nakamura, R.1    Nakato, Y.2
  • 27
    • 84979307950 scopus 로고    scopus 로고
    • Determination of Photoelectrochemical Water Oxidation Intermediates on Haematite Electrode Surfaces Using Operando Infrared Spectroscopy
    • Zandi, O.; Hamann, T. W. Determination of Photoelectrochemical Water Oxidation Intermediates on Haematite Electrode Surfaces Using Operando Infrared Spectroscopy. Nat. Chem. 2016, 8, 778-783, 10.1038/nchem.2557
    • (2016) Nat. Chem. , vol.8 , pp. 778-783
    • Zandi, O.1    Hamann, T.W.2
  • 28
    • 84871665799 scopus 로고    scopus 로고
    • The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments
    • Le Formal, F.; Sivula, K.; Grätzel, M. The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments. J. Phys. Chem. C 2012, 116, 26707-26720, 10.1021/jp308591k
    • (2012) J. Phys. Chem. C , vol.116 , pp. 26707-26720
    • Le Formal, F.1    Sivula, K.2    Grätzel, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.