-
1
-
-
84979927797
-
Semiconducting Materials for Photoelectrochemical Energy Conversion
-
Sivula, K.; van de Krol, R. Semiconducting Materials for Photoelectrochemical Energy Conversion. Nat. Rev. Mater. 2016, 1, 15010, 10.1038/natrevmats.2015.10
-
(2016)
Nat. Rev. Mater.
, vol.1
, pp. 15010
-
-
Sivula, K.1
Van De Krol, R.2
-
2
-
-
85016119744
-
Solar Fuels Photoanode Materials Discovery by Integrating High-Throughput Theory and Experiment
-
Yan, Q.; Yu, J.; Suram, S. K.; Zhou, L.; Shinde, A.; Newhouse, P. F.; Chen, W.; Li, G.; Persson, K. A.; Gregoire, J. M. Solar Fuels Photoanode Materials Discovery by Integrating High-Throughput Theory and Experiment. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 3040-3043, 10.1073/pnas.1619940114
-
(2017)
Proc. Natl. Acad. Sci. U. S. A.
, vol.114
, pp. 3040-3043
-
-
Yan, Q.1
Yu, J.2
Suram, S.K.3
Zhou, L.4
Shinde, A.5
Newhouse, P.F.6
Chen, W.7
Li, G.8
Persson, K.A.9
Gregoire, J.M.10
-
3
-
-
85031282223
-
Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments
-
Shinde, A.; Suram, S. K.; Yan, Q.; Zhou, L.; Singh, A. K.; Yu, J.; Persson, K. A.; Neaton, J. B.; Gregoire, J. M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Lett. 2017, 2, 2307-2312, 10.1021/acsenergylett.7b00607
-
(2017)
ACS Energy Lett.
, vol.2
, pp. 2307-2312
-
-
Shinde, A.1
Suram, S.K.2
Yan, Q.3
Zhou, L.4
Singh, A.K.5
Yu, J.6
Persson, K.A.7
Neaton, J.B.8
Gregoire, J.M.9
-
4
-
-
57649159482
-
Heterogeneous Photocatalyst Materials for Water Splitting
-
Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253-278, 10.1039/B800489G
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
5
-
-
84902144692
-
Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting
-
Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520-7535, 10.1039/C3CS60378D
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7520-7535
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
6
-
-
84961368233
-
Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting
-
Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J.-W.; Kubota, J.; Domen, K.; Lee, J. S. Single-Crystalline, Wormlike Hematite Photoanodes for Efficient Solar Water Splitting. Sci. Rep. 2013, 3, 2681, 10.1038/srep02681
-
(2013)
Sci. Rep.
, vol.3
, pp. 2681
-
-
Kim, J.Y.1
Magesh, G.2
Youn, D.H.3
Jang, J.-W.4
Kubota, J.5
Domen, K.6
Lee, J.S.7
-
7
-
-
84896735953
-
4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
-
4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990-994, 10.1126/science.1246913
-
(2014)
Science
, vol.343
, pp. 990-994
-
-
Kim, T.W.1
Choi, K.-S.2
-
8
-
-
84975886688
-
4 for Photoelectrochemical Water Oxidation
-
4 for Photoelectrochemical Water Oxidation. Acc. Chem. Res. 2016, 49, 1121-1129, 10.1021/acs.accounts.6b00045
-
(2016)
Acc. Chem. Res.
, vol.49
, pp. 1121-1129
-
-
Lhermitte, C.R.1
Bartlett, B.M.2
-
9
-
-
85018504743
-
4 for Boosting Photoelectrochemical Water Splitting
-
4 for Boosting Photoelectrochemical Water Splitting. J. Mater. Chem. A 2017, 5, 7571-7577, 10.1039/C6TA11134C
-
(2017)
J. Mater. Chem. A
, vol.5
, pp. 7571-7577
-
-
Guo, Y.1
Zhang, N.2
Wang, X.3
Qian, Q.4
Zhang, S.5
Li, Z.6
Zou, Z.7
-
10
-
-
85038212735
-
Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode
-
Newhouse, P. F.; Reyes-Lillo, S. E.; Li, G.; Zhou, L.; Shinde, A.; Guevarra, D.; Suram, S. K.; Soedarmadji, E.; Richter, M. H.; Qu, X. Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chem. Mater. 2017, 29, 10027-10036, 10.1021/acs.chemmater.7b03591
-
(2017)
Chem. Mater.
, vol.29
, pp. 10027-10036
-
-
Newhouse, P.F.1
Reyes-Lillo, S.E.2
Li, G.3
Zhou, L.4
Shinde, A.5
Guevarra, D.6
Suram, S.K.7
Soedarmadji, E.8
Richter, M.H.9
Qu, X.10
-
11
-
-
84876586843
-
Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials
-
Toroker, M. C.; Carter, E. A. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials. J. Mater. Chem. A 2013, 1, 2474-2484, 10.1039/c2ta00816e
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2474-2484
-
-
Toroker, M.C.1
Carter, E.A.2
-
12
-
-
85044953409
-
4 (M = Cu, Mg, Zn) as Photoanodes for Solar Water Oxidation: Prospects and Limitations
-
4 (M = Cu, Mg, Zn) as Photoanodes for Solar Water Oxidation: Prospects and Limitations. Sustain Energy Fuels 2018, 2, 103-117, 10.1039/C7SE00448F
-
(2018)
Sustain Energy Fuels
, vol.2
, pp. 103-117
-
-
Guijarro, N.1
Bornoz, P.2
Prévot, M.3
Yu, X.4
Zhu, X.5
Johnson, M.6
Jeanbourquin, X.7
Le Formal, F.8
Sivula, K.9
-
14
-
-
84949570812
-
7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation
-
7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 2015, 119, 27220-27227, 10.1021/acs.jpcc.5b07219
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 27220-27227
-
-
Guo, W.1
Chemelewski, W.D.2
Mabayoje, O.3
Xiao, P.4
Zhang, Y.5
Mullins, C.B.6
-
15
-
-
84948576769
-
5 System
-
5 System. Adv. Energy Mater. 2015, 5, 1500968, 10.1002/aenm.201500968
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Zhou, L.1
Yan, Q.2
Shinde, A.3
Guevarra, D.4
Newhouse, P.F.5
Becerra-Stasiewicz, N.6
Chatman, S.M.7
Haber, J.A.8
Neaton, J.B.9
Gregoire, J.M.10
-
16
-
-
85034066011
-
26 for Use as Photoanodes for Solar Water Splitting
-
26 for Use as Photoanodes for Solar Water Splitting. Chem. Mater. 2017, 29, 9472-9479, 10.1021/acs.chemmater.7b03587
-
(2017)
Chem. Mater.
, vol.29
, pp. 9472-9479
-
-
Lumley, M.A.1
Choi, K.-S.2
-
17
-
-
79952418480
-
3) Electrodes Using Hydrogen Peroxide as a Hole Scavenger
-
3) Electrodes Using Hydrogen Peroxide as a Hole Scavenger. Energy Environ. Sci. 2011, 4, 958-964, 10.1039/C0EE00570C
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 958-964
-
-
Dotan, H.1
Sivula, K.2
Grätzel, M.3
Rothschild, A.4
Warren, S.C.5
-
18
-
-
85044946600
-
Quantification of the Loss Mechanisms in Emerging Water Splitting Photoanodes Through Empirical Extraction of the Spatial Charge Collection Efficiency
-
DOI: 10.1039/C7EE03486E
-
Segev, G.; Jiang, C.-M.; Cooper, J. K.; Eichoorn, J.; Toma, F. M.; Sharp, I. D. Quantification of the Loss Mechanisms in Emerging Water Splitting Photoanodes Through Empirical Extraction of the Spatial Charge Collection Efficiency. Energy Environ. Sci. 2018, DOI: 10.1039/C7EE03486E.
-
(2018)
Energy Environ. Sci.
-
-
Segev, G.1
Jiang, C.-M.2
Cooper, J.K.3
Eichoorn, J.4
Toma, F.M.5
Sharp, I.D.6
-
19
-
-
84878062541
-
Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis
-
Sivula, K. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. J. Phys. Chem. Lett. 2013, 4, 1624-1633, 10.1021/jz4002983
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 1624-1633
-
-
Sivula, K.1
-
20
-
-
84876263966
-
Energetics and Kinetics of Light-Driven Oxygen Evolution at Semiconductor Electrodes: The Example of Hematite
-
Peter, L. M. Energetics and Kinetics of Light-Driven Oxygen Evolution at Semiconductor Electrodes: The Example of Hematite. J. Solid State Electrochem. 2013, 17, 315-326, 10.1007/s10008-012-1957-3
-
(2013)
J. Solid State Electrochem.
, vol.17
, pp. 315-326
-
-
Peter, L.M.1
-
21
-
-
84857816685
-
Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
-
Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water Oxidation at Hematite Photoelectrodes: The Role of Surface States. J. Am. Chem. Soc. 2012, 134, 4294-4302, 10.1021/ja210755h
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 4294-4302
-
-
Klahr, B.1
Gimenez, S.2
Fabregat-Santiago, F.3
Hamann, T.4
Bisquert, J.5
-
22
-
-
84930221967
-
Rate Law Analysis of Water Oxidation on a Hematite Surface
-
Le Formal, F.; Pastor, E.; Tilley, S. D.; Mesa, C. A.; Pendlebury, S. R.; Gratzel, M.; Durrant, J. R. Rate Law Analysis of Water Oxidation on a Hematite Surface. J. Am. Chem. Soc. 2015, 137, 6629-6637, 10.1021/jacs.5b02576
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6629-6637
-
-
Le Formal, F.1
Pastor, E.2
Tilley, S.D.3
Mesa, C.A.4
Pendlebury, S.R.5
Gratzel, M.6
Durrant, J.R.7
-
23
-
-
85024861467
-
4 Photoanode
-
4 Photoanode. ACS Energy Lett. 2016, 1, 618-623, 10.1021/acsenergylett.6b00263
-
(2016)
ACS Energy Lett.
, vol.1
, pp. 618-623
-
-
Ma, Y.1
Mesa, C.A.2
Pastor, E.3
Kafizas, A.4
Francàs, L.5
Le Formal, F.6
Pendlebury, S.R.7
Durrant, J.R.8
-
24
-
-
85017434473
-
8 Thin Films
-
8 Thin Films. Chem. Mater. 2017, 29, 3334-3345, 10.1021/acs.chemmater.7b00807
-
(2017)
Chem. Mater.
, vol.29
, pp. 3334-3345
-
-
Jiang, C.-M.1
Farmand, M.2
Wu, C.H.3
Liu, Y.-S.4
Guo, J.5
Drisdell, W.S.6
Cooper, J.K.7
Sharp, I.D.8
-
25
-
-
84936158860
-
Semiconducting Transition Metal Oxides
-
Lany, S. Semiconducting Transition Metal Oxides. J. Phys.: Condens. Matter 2015, 27, 283203, 10.1088/0953-8984/27/28/283203
-
(2015)
J. Phys.: Condens. Matter
, vol.27
-
-
Lany, S.1
-
26
-
-
0742306500
-
2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements
-
2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements. J. Am. Chem. Soc. 2004, 126, 1290-1298, 10.1021/ja0388764
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 1290-1298
-
-
Nakamura, R.1
Nakato, Y.2
-
27
-
-
84979307950
-
Determination of Photoelectrochemical Water Oxidation Intermediates on Haematite Electrode Surfaces Using Operando Infrared Spectroscopy
-
Zandi, O.; Hamann, T. W. Determination of Photoelectrochemical Water Oxidation Intermediates on Haematite Electrode Surfaces Using Operando Infrared Spectroscopy. Nat. Chem. 2016, 8, 778-783, 10.1038/nchem.2557
-
(2016)
Nat. Chem.
, vol.8
, pp. 778-783
-
-
Zandi, O.1
Hamann, T.W.2
-
28
-
-
84871665799
-
The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments
-
Le Formal, F.; Sivula, K.; Grätzel, M. The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments. J. Phys. Chem. C 2012, 116, 26707-26720, 10.1021/jp308591k
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 26707-26720
-
-
Le Formal, F.1
Sivula, K.2
Grätzel, M.3
-
32
-
-
84990067668
-
4
-
4. Chem. Mater. 2014, 26, 5365-5373, 10.1021/cm5025074
-
(2014)
Chem. Mater.
, vol.26
, pp. 5365-5373
-
-
Cooper, J.K.1
Gul, S.2
Toma, F.M.3
Chen, L.4
Glans, P.-A.5
Guo, J.6
Ager, J.W.7
Yano, J.8
Sharp, I.D.9
-
33
-
-
84923163909
-
Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate
-
Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Liu, Y.-S.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D. Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. J. Phys. Chem. C 2015, 119, 2969-2974, 10.1021/jp512169w
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 2969-2974
-
-
Cooper, J.K.1
Gul, S.2
Toma, F.M.3
Chen, L.4
Liu, Y.-S.5
Guo, J.6
Ager, J.W.7
Yano, J.8
Sharp, I.D.9
|