메뉴 건너뛰기




Volumn 183, Issue , 2018, Pages 1-7

Open data mining for Taiwan's dengue epidemic

Author keywords

Data mining; Dengue epidemic; Google trend; Open data; Simplicity

Indexed keywords

ACCURACY ASSESSMENT; DATA MINING; DENGUE FEVER; EPIDEMIC; HEALTH CARE; INFORMATION AND COMMUNICATION TECHNOLOGY; INTERNET; PUBLIC HEALTH; QUANTITATIVE ANALYSIS; RESEARCH WORK;

EID: 85044594174     PISSN: 0001706X     EISSN: 18736254     Source Type: Journal    
DOI: 10.1016/j.actatropica.2018.03.017     Document Type: Article
Times cited : (23)

References (38)
  • 1
    • 77249091164 scopus 로고    scopus 로고
    • Dengue confirmed-cases prediction: a neural network model
    • Aburas, H.M., Cetiner, B.G., Sari, M., Dengue confirmed-cases prediction: a neural network model. Expert Syst. Appl. 37:6 (2010), 4256–4260.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.6 , pp. 4256-4260
    • Aburas, H.M.1    Cetiner, B.G.2    Sari, M.3
  • 2
    • 85008978654 scopus 로고    scopus 로고
    • Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia – a generalized linear model with break-point analysis
    • Alkhaldy, I., Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia – a generalized linear model with break-point analysis. Acta Trop. 168 (2017), 9–15.
    • (2017) Acta Trop. , vol.168 , pp. 9-15
    • Alkhaldy, I.1
  • 3
    • 84888781102 scopus 로고    scopus 로고
    • Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh
    • Banu, S., Hu, W., Guo, Y., Hurst, C., Tong, S., Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ. Int. 63 (2014), 137–142.
    • (2014) Environ. Int. , vol.63 , pp. 137-142
    • Banu, S.1    Hu, W.2    Guo, Y.3    Hurst, C.4    Tong, S.5
  • 4
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection – harnessing the web for public health surveillance
    • URL
    • Brownstein, J.S., Freifeld, C.C., Madoff, L.C., Digital disease detection – harnessing the web for public health surveillance. New Engl. J. Med., 2009 URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917042/.
    • (2009) New Engl. J. Med.
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 5
    • 84908432655 scopus 로고    scopus 로고
    • From data mining to knowledge mining: application to intelligent agents
    • Chemchem, A., Drisas, H., From data mining to knowledge mining: application to intelligent agents. Expert Syst. Appl. 42 (2015), 1436–1445.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 1436-1445
    • Chemchem, A.1    Drisas, H.2
  • 6
    • 84878363072 scopus 로고    scopus 로고
    • Predicting dengue outbreaks using approximate entropy algorithm and pattern recognition
    • Chen, C.C., Chang, H.C., Predicting dengue outbreaks using approximate entropy algorithm and pattern recognition. J. Infect. 67:1 (2013), 65–71.
    • (2013) J. Infect. , vol.67 , Issue.1 , pp. 65-71
    • Chen, C.C.1    Chang, H.C.2
  • 7
    • 0030387631 scopus 로고    scopus 로고
    • Data mining: an overview from a database perspective
    • Chen, M.S., Han, J., Yu, P.S., Data mining: an overview from a database perspective. IEEE Trans. Knowl. Data Eng. 8 (1996), 866–883.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , pp. 866-883
    • Chen, M.S.1    Han, J.2    Yu, P.S.3
  • 8
    • 84905190212 scopus 로고    scopus 로고
    • Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence
    • Chien, L.C., Yu, H.L., Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence. Environ. Int. 73 (2014), 46–56.
    • (2014) Environ. Int. , vol.73 , pp. 46-56
    • Chien, L.C.1    Yu, H.L.2
  • 9
    • 84988037437 scopus 로고    scopus 로고
    • A spatial model of socioeconomic and environmental determinants of dengue fever in Cali, Colombia
    • Delmelle, E., Hagenlocher, M., Kienberger, S., Casas, I., A spatial model of socioeconomic and environmental determinants of dengue fever in Cali, Colombia. Acta Trop. 164 (2016), 169–176.
    • (2016) Acta Trop. , vol.164 , pp. 169-176
    • Delmelle, E.1    Hagenlocher, M.2    Kienberger, S.3    Casas, I.4
  • 10
    • 84888424872 scopus 로고    scopus 로고
    • Data science and prediction
    • Dhar, V., Data science and prediction. Commun. ACM 56:12 (2013), 64–73.
    • (2013) Commun. ACM , vol.56 , Issue.12 , pp. 64-73
    • Dhar, V.1
  • 11
    • 84881489965 scopus 로고    scopus 로고
    • Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia
    • Dom, N.C., Hassan, A.A., Latif, Z.A., Ismail, R., Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pac. J. Trop. Dis. 3:5 (2013), 352–361.
    • (2013) Asian Pac. J. Trop. Dis. , vol.3 , Issue.5 , pp. 352-361
    • Dom, N.C.1    Hassan, A.A.2    Latif, Z.A.3    Ismail, R.4
  • 12
    • 84997269736 scopus 로고    scopus 로고
    • Application of geographical information system-based analytical hierarchy process as a tool for dengue risk assessment
    • Dom, N.C., Hassan Ahmad, A., Abd Latif, Z., Ismail, R., Application of geographical information system-based analytical hierarchy process as a tool for dengue risk assessment. Asian Pac. J. Trop. Dis. 6:12 (2016), 928–935.
    • (2016) Asian Pac. J. Trop. Dis. , vol.6 , Issue.12 , pp. 928-935
    • Dom, N.C.1    Hassan Ahmad, A.2    Abd Latif, Z.3    Ismail, R.4
  • 13
    • 84907015019 scopus 로고    scopus 로고
    • Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia
    • Eastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C., Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. Am. J. Trop. Med. Hyg. 91:3 (2014), 598–610.
    • (2014) Am. J. Trop. Med. Hyg. , vol.91 , Issue.3 , pp. 598-610
    • Eastin, M.D.1    Delmelle, E.2    Casas, I.3    Wexler, J.4    Self, C.5
  • 14
    • 85003845789 scopus 로고    scopus 로고
    • Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015
    • Hsu, J.C., Hsieh, C.L., Lu, C.Y., Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010–2015. Int. J. Infect. Dis. 54 (2017), 43–49.
    • (2017) Int. J. Infect. Dis. , vol.54 , pp. 43-49
    • Hsu, J.C.1    Hsieh, C.L.2    Lu, C.Y.3
  • 15
    • 84859381511 scopus 로고    scopus 로고
    • Spatio-temporal patterns of dengue fever cases in Kaoshiung City, Taiwan, 2003–2008
    • Hsueh, Y.H., Lee, J., Beltz, L., Spatio-temporal patterns of dengue fever cases in Kaoshiung City, Taiwan, 2003–2008. Appl. Geogr. 34 (2012), 587–594.
    • (2012) Appl. Geogr. , vol.34 , pp. 587-594
    • Hsueh, Y.H.1    Lee, J.2    Beltz, L.3
  • 16
    • 85008978654 scopus 로고    scopus 로고
    • Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia—A generalized linear model with break-point analysis
    • Ibrahim Alkhaldy, I., Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia—A generalized linear model with break-point analysis. Acta Trop. 168 (2017), 9–15.
    • (2017) Acta Trop. , vol.168 , pp. 9-15
    • Ibrahim Alkhaldy, I.1
  • 17
    • 84949491823 scopus 로고    scopus 로고
    • Knowledge discovery and sequence-based prediction of pandemic influenza using an integrated classification and association rule mining (CBA) algorithm
    • Kargarfard, F., Sami, A., Ebrahimie, E., Knowledge discovery and sequence-based prediction of pandemic influenza using an integrated classification and association rule mining (CBA) algorithm. J. Biomed. Inform. 57 (2015), 181–188.
    • (2015) J. Biomed. Inform. , vol.57 , pp. 181-188
    • Kargarfard, F.1    Sami, A.2    Ebrahimie, E.3
  • 18
    • 80053320972 scopus 로고    scopus 로고
    • Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study
    • Khormi, H.M., Kumar, L., Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Sci. Total Environ. 409:22 (2011), 4713–4719.
    • (2011) Sci. Total Environ. , vol.409 , Issue.22 , pp. 4713-4719
    • Khormi, H.M.1    Kumar, L.2
  • 19
    • 84910050611 scopus 로고    scopus 로고
    • Data mining and linked open data–New perspectives for data analysis in environmental research
    • Lausch, A., Schmidt, A., Tischendorf, L., Data mining and linked open data–New perspectives for data analysis in environmental research. Ecol. Modell. 295 (2015), 5–17.
    • (2015) Ecol. Modell. , vol.295 , pp. 5-17
    • Lausch, A.1    Schmidt, A.2    Tischendorf, L.3
  • 20
    • 82255191793 scopus 로고    scopus 로고
    • Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling
    • Machado-Machado, E.A., Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl. Geogr. 33 (2012), 82–93.
    • (2012) Appl. Geogr. , vol.33 , pp. 82-93
    • Machado-Machado, E.A.1
  • 21
  • 22
    • 84910071979 scopus 로고    scopus 로고
    • Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam
    • Phung, D., Huang, C., Rutherford, S., Chu, C., Wang, X., Nguyen, M., Nguyen, N.H., Manh, C.D., Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Trop. 141:Part A (2015), 88–96.
    • (2015) Acta Trop. , vol.141 , pp. 88-96
    • Phung, D.1    Huang, C.2    Rutherford, S.3    Chu, C.4    Wang, X.5    Nguyen, M.6    Nguyen, N.H.7    Manh, C.D.8
  • 23
    • 84892889305 scopus 로고    scopus 로고
    • Knowledge discovery in clinical decision support systems for pain management: a systematic review
    • Pombo, N., Araújo, P., Viana, J., Knowledge discovery in clinical decision support systems for pain management: a systematic review. Artif. Intell. Med. 60:1 (2014), 1–11.
    • (2014) Artif. Intell. Med. , vol.60 , Issue.1 , pp. 1-11
    • Pombo, N.1    Araújo, P.2    Viana, J.3
  • 24
    • 33744584654 scopus 로고
    • Induction of decision tree
    • Quinlan, J.R., Induction of decision tree. Mach. Learn. 1 (1986), 81–106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 25
    • 84921671055 scopus 로고    scopus 로고
    • Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study
    • Ramezankhani, A., Pournik, O., Shahrabi, J., Khalili, D., Azizi, F., Hadaegh, F., Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res. Clin. Pract. 105:3 (2014), 391–398.
    • (2014) Diabetes Res. Clin. Pract. , vol.105 , Issue.3 , pp. 391-398
    • Ramezankhani, A.1    Pournik, O.2    Shahrabi, J.3    Khalili, D.4    Azizi, F.5    Hadaegh, F.6
  • 27
    • 85016073458 scopus 로고    scopus 로고
    • Temporal patterns of dengue epidemics: the case of recent outbreaks in Kaohsiung
    • Sanna, M., Ying-Hen Hsieh, Y.H., Temporal patterns of dengue epidemics: the case of recent outbreaks in Kaohsiung. Asian Pac. J. Trop. Med. 10:3 (2017), 292–298.
    • (2017) Asian Pac. J. Trop. Med. , vol.10 , Issue.3 , pp. 292-298
    • Sanna, M.1    Ying-Hen Hsieh, Y.H.2
  • 28
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google flu trends?
    • Santillana, M., Zhang, D.W., Althouse, B.M., Ayers, J.W., What can digital disease detection learn from (an external revision to) Google flu trends?. Am. J. Prev. Med. 47:3 (2014), 341–347.
    • (2014) Am. J. Prev. Med. , vol.47 , Issue.3 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 29
    • 85019346031 scopus 로고    scopus 로고
    • Google dengue trends: an indicator of epidemic behavior The Venezuelan Case
    • Strauss, R.A., Castro, J.S., Reintjes, R., Torres, J.R., Google dengue trends: an indicator of epidemic behavior The Venezuelan Case. Int. J. Med. Inf. 104 (2017), 26–30.
    • (2017) Int. J. Med. Inf. , vol.104 , pp. 26-30
    • Strauss, R.A.1    Castro, J.S.2    Reintjes, R.3    Torres, J.R.4
  • 30
    • 85166808292 scopus 로고    scopus 로고
    • TCDC, Taiwan's Center Disease Control 2016, Access date: 2016, January
    • TCDC, Taiwan's Center Disease Control 2016, Access date: 2016, January, http://www.cdc.gov.tw/english/index.aspx.
  • 31
    • 56349112446 scopus 로고    scopus 로고
    • Using Kaplan-Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4. 5 and ID3) in determining recurrence-free survival of breast cancer patients
    • Ture, M., Tokatli, F., Kurt, I., Using Kaplan-Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4. 5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst. Appl. 36:2 (2009), 2017–2026.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 2017-2026
    • Ture, M.1    Tokatli, F.2    Kurt, I.3
  • 32
    • 84856467249 scopus 로고    scopus 로고
    • Development of temporal modeling for prediction of dengue infection in Northeastern Thailand
    • Wongkoon, S., Jaroensutasinee, M., Jaroensutasinee, K., Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pac. J. Trop. Med. 5:3 (2012), 249–252.
    • (2012) Asian Pac. J. Trop. Med. , vol.5 , Issue.3 , pp. 249-252
    • Wongkoon, S.1    Jaroensutasinee, M.2    Jaroensutasinee, K.3
  • 33
    • 60649116930 scopus 로고    scopus 로고
    • Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan
    • Wu, P.C., Lay, J.G., Guo, H.R., Lin, C.Y., Lung, S.C., Su, H.J., Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci. Total Environ. 407:7 (2009), 2224–2233.
    • (2009) Sci. Total Environ. , vol.407 , Issue.7 , pp. 2224-2233
    • Wu, P.C.1    Lay, J.G.2    Guo, H.R.3    Lin, C.Y.4    Lung, S.C.5    Su, H.J.6
  • 34
    • 84876911778 scopus 로고    scopus 로고
    • Examination and comparison of conflicting data in granulated datasets: equal width interval vs. equal frequency interval
    • Wu, C.H., Kao, S.C., Okuhara, K., Examination and comparison of conflicting data in granulated datasets: equal width interval vs. equal frequency interval. Inf. Sci. 239:1 (2013), 154–164.
    • (2013) Inf. Sci. , vol.239 , Issue.1 , pp. 154-164
    • Wu, C.H.1    Kao, S.C.2    Okuhara, K.3
  • 35
    • 22144499172 scopus 로고    scopus 로고
    • On the granulation simplicity for the decision rule discovery in databases: EWI Vs EFI
    • Wu, C.H., On the granulation simplicity for the decision rule discovery in databases: EWI Vs EFI. Int. J. Sci. Technol. 14 (2003), 28–36.
    • (2003) Int. J. Sci. Technol. , vol.14 , pp. 28-36
    • Wu, C.H.1
  • 37
    • 84958231330 scopus 로고    scopus 로고
    • Exploring the economic value of open government data
    • Zeleti, F.A., Ojo, A., Curry, E., Exploring the economic value of open government data. Gov. Inf. Q. 33:3 (2016), 535–551.
    • (2016) Gov. Inf. Q. , vol.33 , Issue.3 , pp. 535-551
    • Zeleti, F.A.1    Ojo, A.2    Curry, E.3
  • 38
    • 84895904996 scopus 로고    scopus 로고
    • Open data policies, their implementation and impact: a framework for comparison
    • Zuiderwijk, A., Janssen, M., Open data policies, their implementation and impact: a framework for comparison. Gov. Inf. Q. 31:1 (2014), 17–29.
    • (2014) Gov. Inf. Q. , vol.31 , Issue.1 , pp. 17-29
    • Zuiderwijk, A.1    Janssen, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.