메뉴 건너뛰기




Volumn 144, Issue 711, 2018, Pages 529-538

Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously

Author keywords

Arctic; CryoSat 2; data assimilation; ensemble Kalman filter; sea ice thickness; SMOS

Indexed keywords

BLENDING; GLACIERS; KALMAN FILTERS;

EID: 85044402441     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.3225     Document Type: Article
Times cited : (51)

References (51)
  • 3
    • 84901262644 scopus 로고    scopus 로고
    • EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int
    • Brodzik MJ, Billingsley B, Haran T, Raup B, Savoie MH. 2012. EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int. J. Geoinf. 1: 32–45. https://doi.org/10.3390/ijgi1010032.
    • (2012) J. Geoinf. , vol.1 , pp. 32-45
    • Brodzik, M.J.1    Billingsley, B.2    Haran, T.3    Raup, B.4    Savoie, M.H.5
  • 4
    • 84898982551 scopus 로고    scopus 로고
    • Sensitivity to realistic ice thickness distributions and snow parameterizations of simulated Arctic sea ice
    • Castro-Morales K, Kauker F, Losch M, Hendricks S, Riemann-Campe K, Gerdes R. 2014. Sensitivity to realistic ice thickness distributions and snow parameterizations of simulated Arctic sea ice. J. Geophys. Res. 119: 1–13. https://doi.org/10.1002/2013JC009342.
    • (2014) J. Geophys. Res. , vol.119 , pp. 1-13
    • Castro-Morales, K.1    Kauker, F.2    Losch, M.3    Hendricks, S.4    Riemann-Campe, K.5    Gerdes, R.6
  • 6
    • 0022840631 scopus 로고
    • Characteristics of Arctic winter sea ice from satellite multispectral microwave observations
    • Comiso JC. 1986. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res. 91: 975–994. https://doi.org/10.1029/JC091iC01p00975.
    • (1986) J. Geophys. Res. , vol.91 , pp. 975-994
    • Comiso, J.C.1
  • 7
    • 84912060614 scopus 로고    scopus 로고
    • Will Arctic sea ice thickness initialization improve seasonal forecast skill?
    • Day JJ, Hawkins E, Tietsche S. 2014. Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett. 41: 7566–7575. https://doi.org/10.1002/2014GL061694.
    • (2014) Geophys. Res. Lett. , vol.41 , pp. 7566-7575
    • Day, J.J.1    Hawkins, E.2    Tietsche, S.3
  • 9
    • 0028193070 scopus 로고
    • Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics
    • Evensen G. 1994. Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143–10162. https://doi.org/10.1029/94JC00572.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 10
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari G, Cohn SE. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723–757.
    • (1999) Q. J. R. Meteorol. Soc. , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 12
    • 0000716685 scopus 로고
    • A dynamic thermodynamic sea ice model
    • Hibler W III. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9: 815–846.
    • (1979) J. Phys. Oceanogr. , vol.9 , pp. 815-846
    • Hibler, W.1
  • 13
    • 0021558132 scopus 로고
    • 2 increases
    • In, Hansen JE, Takahashi T, (eds.), American Geophysical Union, Washington, DC
    • 2 increases. In Climate Processes and Climate Sensitivity, Hansen JE, Takahashi T. (eds.): 238–253. American Geophysical Union: Washington, DC. https://doi.org/10.1029/GM029p0238.
    • (1984) Climate Processes and Climate Sensitivity , pp. 238-253
    • Hibler, W.1
  • 14
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230: 112–126. https://doi.org/10.1016/j.physd.2006.11.008.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 16
    • 77958537889 scopus 로고    scopus 로고
    • Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic
    • Lavergne T, Eastwood S, Teffah Z, Schyberg H, Breivik LA. 2010. Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic. J. Geophys. Res. 115: C10032. https://doi.org/10.1029/2009JC005958.
    • (2010) J. Geophys. Res. , vol.115 , pp. C10032
    • Lavergne, T.1    Eastwood, S.2    Teffah, Z.3    Schyberg, H.4    Breivik, L.A.5
  • 18
    • 0000261492 scopus 로고    scopus 로고
    • Data assimilation and inverse methods in terms of a probabilistic formulation
    • van Leeuwen PJ, Evensen G. 1996. Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124: 2898–2913. https://doi.org/10.1175/1520-0493(1996)1240085:AOGADF2.0.CO;2.
    • (1996) Mon. Weather Rev. , vol.124 , pp. 2898-2913
    • van Leeuwen, P.J.1    Evensen, G.2
  • 19
    • 33646425440 scopus 로고    scopus 로고
    • Assimilation of ice concentration in an ice–ocean model
    • Lindsay RW, Zhang J. 2006. Assimilation of ice concentration in an ice–ocean model. J. Atmos. Oceanic Technol. 23: 742–749. https://doi.org/10.1175/JTECH1871.1.
    • (2006) J. Atmos. Oceanic Technol. , vol.23 , pp. 742-749
    • Lindsay, R.W.1    Zhang, J.2
  • 20
    • 33846935330 scopus 로고    scopus 로고
    • Assimilation of ice concentration in a coupled ice-ocean model, using the Ensemble Kalman filter
    • Lisæter KL, Rosanova J, Evensen G. 2003. Assimilation of ice concentration in a coupled ice-ocean model, using the Ensemble Kalman filter. Ocean Dyn. 53: 368–388. https://doi.org/10.1007/s10236-003-0049-4.
    • (2003) Ocean Dyn. , vol.53 , pp. 368-388
    • Lisæter, K.L.1    Rosanova, J.2    Evensen, G.3
  • 21
    • 34548621136 scopus 로고    scopus 로고
    • Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model
    • Lisæter KA, Evensen G, Laxon SW. 2007. Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model. J. Geophys. Res. Ocean 112: 1–14. https://doi.org/10.1029/2006JC003786.
    • (2007) J. Geophys. Res. Ocean , vol.112 , pp. 1-14
    • Lisæter, K.A.1    Evensen, G.2    Laxon, S.W.3
  • 22
    • 77949915710 scopus 로고    scopus 로고
    • On the formulation of sea ice models. Part 1: Effects of different solver implementations and parameterizations
    • Losch M, Menemenlis D, Campin JM, Heimbach P, Hill C. 2010. On the formulation of sea ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell 33: 129–144. https://doi.org/10.1016/j.ocemod.2009.12.008.
    • (2010) Ocean Modell , vol.33 , pp. 129-144
    • Losch, M.1    Menemenlis, D.2    Campin, J.M.3    Heimbach, P.4    Hill, C.5
  • 23
    • 0030762883 scopus 로고    scopus 로고
    • A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers
    • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C. 1997. A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102: 5753–5766. https://doi.org/10.1029/96JC02775.
    • (1997) J. Geophys. Res. , vol.102 , pp. 5753-5766
    • Marshall, J.1    Adcroft, A.2    Hill, C.3    Perelman, L.4    Heisey, C.5
  • 24
    • 84874575532 scopus 로고    scopus 로고
    • A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation
    • Massonnet F, Mathiot P, Fichefet T, Goosse H, Konig Beatty C, Vancoppenolle M, Lavergne T. 2013. A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation. Ocean Modell. 64: 67–75. https://doi.org/10.1016/j.ocemod.2013.01.003.
    • (2013) Ocean Modell. , vol.64 , pp. 67-75
    • Massonnet, F.1    Mathiot, P.2    Fichefet, T.3    Goosse, H.4    Konig Beatty, C.5    Vancoppenolle, M.6    Lavergne, T.7
  • 25
    • 0009948947 scopus 로고
    • Measurements of the underside topography of sea ice by moored subsea sonar
    • Melling H, Johnston PH, Riedel D. 1995. Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Oceanic Technol. 12: 589–602.
    • (1995) J. Atmos. Oceanic Technol. , vol.12 , pp. 589-602
    • Melling, H.1    Johnston, P.H.2    Riedel, D.3
  • 27
    • 85008881301 scopus 로고    scopus 로고
    • Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990–2008
    • Mu L, Zhao J, Zhong W. 2017. Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990–2008. Acta Oceanolog. Sin. 36: 35–43. https://doi.org/10.1007/s13131-016-0883-0.
    • (2017) Acta Oceanolog. Sin. , vol.36 , pp. 35-43
    • Mu, L.1    Zhao, J.2    Zhong, W.3
  • 28
    • 84876102834 scopus 로고    scopus 로고
    • Software for ensemble-based data assimilation systems-implementation strategies and scalability
    • Nerger L, Hiller W. 2013. Software for ensemble-based data assimilation systems-implementation strategies and scalability. Comput. Geosci. 55: 110–118. https://doi.org/10.1016/j.cageo.2012.03.026.
    • (2013) Comput. Geosci. , vol.55 , pp. 110-118
    • Nerger, L.1    Hiller, W.2
  • 29
    • 33845963193 scopus 로고    scopus 로고
    • Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter
    • Nerger L, Danilov S, Hiller W, Schröter J. 2006. Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter. Ocean Dyn. 56: 634–649.
    • (2006) Ocean Dyn. , vol.56 , pp. 634-649
    • Nerger, L.1    Danilov, S.2    Hiller, W.3    Schröter, J.4
  • 30
    • 79955583056 scopus 로고    scopus 로고
    • Arctic ice-ocean simulation with optimized model parameters: Approach and assessment
    • Nguyen AT, Menemenlis D, Kwok R. 2011. Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res. Ocean 116: 1–18. https://doi.org/10.1029/2010JC006573.
    • (2011) J. Geophys. Res. Ocean , vol.116 , pp. 1-18
    • Nguyen, A.T.1    Menemenlis, D.2    Kwok, R.3
  • 31
    • 58049196895 scopus 로고    scopus 로고
    • TIGGE: Preliminary results on comparing and combining ensembles
    • Park YY, Buizza R, Leutbecher M. 2008. TIGGE: Preliminary results on comparing and combining ensembles. Q. J. R. Meteorol. Soc. 134: 2029–2050. https://doi.org/10.1002/qj.334.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 2029-2050
    • Park, Y.Y.1    Buizza, R.2    Leutbecher, M.3
  • 32
    • 0018292572 scopus 로고
    • A large-scale numerical model of sea ice
    • Parkinson CL, Washington WM. 1979. A large-scale numerical model of sea ice. J. Geophys. Res. 84: 311–337. https://doi.org/10.1029/JC084iC01p00311.
    • (1979) J. Geophys. Res. , vol.84 , pp. 311-337
    • Parkinson, C.L.1    Washington, W.M.2
  • 34
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham DT. 2001. Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Weather Rev. 129: 1194–1207. https://doi.org/10.1175/1520-0493(2001)1291194:SMFSDA2.0.CO;2.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 36
    • 34249046346 scopus 로고    scopus 로고
    • Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover
    • Richter-Menge JA, Perovich DK, Elder BC, Claffey K, Rigor I, Ortmeyer M. 2006. Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea ice cover. Ann. Glaciol. 44: 205–210.
    • (2006) Ann. Glaciol. , vol.44 , pp. 205-210
    • Richter-Menge, J.A.1    Perovich, D.K.2    Elder, B.C.3    Claffey, K.4    Rigor, I.5    Ortmeyer, M.6
  • 37
    • 84913525252 scopus 로고    scopus 로고
    • Sensitivity of CryoSat-2 Arctic sea ice freeboard and thickness on radar-waveform interpretation
    • Ricker R, Hendricks S, Helm V, Skourup H, Davidson M. 2014. Sensitivity of CryoSat-2 Arctic sea ice freeboard and thickness on radar-waveform interpretation. Cryosphere 8: 1607–1622. https://doi.org/10.5194/tc-8-1607-2014.
    • (2014) Cryosphere , vol.8 , pp. 1607-1622
    • Ricker, R.1    Hendricks, S.2    Helm, V.3    Skourup, H.4    Davidson, M.5
  • 38
    • 85022320796 scopus 로고    scopus 로고
    • A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
    • Ricker R, Hendricks S, Kaleschke L, Tian-Kunze X, King J, Haas C. 2017. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere 11: 1607–1623. https://doi.org/10.5194/tc-11-1607-2017.
    • (2017) The Cryosphere , vol.11 , pp. 1607-1623
    • Ricker, R.1    Hendricks, S.2    Kaleschke, L.3    Tian-Kunze, X.4    King, J.5    Haas, C.6
  • 40
    • 0030250436 scopus 로고    scopus 로고
    • Extraction of winter total sea-ice concentration in the Greenland and Barents Sea from SSM/I data
    • Smith DM. 1996. Extraction of winter total sea-ice concentration in the Greenland and Barents Sea from SSM/I data. Int. J. Remote Sens. 17: 2625–2646. https://doi.org/10.1080/01431169608949096.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 2625-2646
    • Smith, D.M.1
  • 41
    • 0030842741 scopus 로고    scopus 로고
    • Global sea floor topography from satellite altimetry and ship depth soundings
    • Smith WH, Sandwell D. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277: 1956–1962. https://doi.org/10.1126/science.277.5334.1956.
    • (1997) Science , vol.277 , pp. 1956-1962
    • Smith, W.H.1    Sandwell, D.2
  • 42
    • 68749115462 scopus 로고    scopus 로고
    • Sea ice concentration and motion assimilation in a sea ice–ocean model
    • C05S91
    • Stark JD, Ridley J, Martin M, Hines A. 2008. Sea ice concentration and motion assimilation in a sea ice–ocean model. J. Geophys. Res. Ocean 113: C05S91. https://doi.org/10.1029/2007JC004224.
    • (2008) J. Geophys. Res. Ocean , vol.113
    • Stark, J.D.1    Ridley, J.2    Martin, M.3    Hines, A.4
  • 43
    • 84902286877 scopus 로고    scopus 로고
    • SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification
    • Tian-Kunze X, Kaleschke L, Maass N, Mäkynen M, Serra N, Drusch M, Krumpen T. 2014. SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. The Cryosphere 8: 997–1018. https://doi.org/10.5194/tc-8-997-2014.
    • (2014) The Cryosphere , vol.8 , pp. 997-1018
    • Tian-Kunze, X.1    Kaleschke, L.2    Maass, N.3    Mäkynen, M.4    Serra, N.5    Drusch, M.6    Krumpen, T.7
  • 44
    • 84938578968 scopus 로고    scopus 로고
    • Increased Arctic sea ice volume after anomalously low melting in 2013
    • Tilling RL, Ridout A, Shepherd A, Wingham DJ. 2015. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 8: 643–646. https://doi.org/10.1038/ngeo2489.
    • (2015) Nat. Geosci. , vol.8 , pp. 643-646
    • Tilling, R.L.1    Ridout, A.2    Shepherd, A.3    Wingham, D.J.4
  • 46
    • 84996602340 scopus 로고    scopus 로고
    • Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system
    • Xie J, Counillon F, Bertino L, Tian-Kunze X, Kaleschke L. 2016. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system. The Cryosphere 10: 2745–2761. https://doi.org/10.5194/tc-10-2745-2016.
    • (2016) The Cryosphere , vol.10 , pp. 2745-2761
    • Xie, J.1    Counillon, F.2    Bertino, L.3    Tian-Kunze, X.4    Kaleschke, L.5
  • 47
  • 48
    • 84941087129 scopus 로고    scopus 로고
    • The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction
    • Yang Q, Losa SN, Losch M, Jung T, Nerger L. 2015. The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction. Q. J. R. Meteorol. Soc. 141: 2314–2323. https://doi.org/10.1002/qj.2523.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 2314-2323
    • Yang, Q.1    Losa, S.N.2    Losch, M.3    Jung, T.4    Nerger, L.5
  • 49
    • 84962905566 scopus 로고    scopus 로고
    • Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model
    • Yang Q, Losch M, Losa SN, Jung T, Nerger L. 2016. Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model. J. Atmos. Oceanic Technol. 33: 397–407. https://doi.org/10.1175/JTECH-D-15-0176.1.
    • (2016) J. Atmos. Oceanic Technol. , vol.33 , pp. 397-407
    • Yang, Q.1    Losch, M.2    Losa, S.N.3    Jung, T.4    Nerger, L.5
  • 50
    • 0030867945 scopus 로고    scopus 로고
    • On an efficient numerical method for modeling sea ice dynamics
    • Zhang J, Hibler W III. 1997. On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res. 102: 8691–8702. https://doi.org/10.1029/96JC03744.
    • (1997) J. Geophys. Res. , vol.102 , pp. 8691-8702
    • Zhang, J.1    Hibler, W.2
  • 51
    • 0000223424 scopus 로고    scopus 로고
    • Arctic ice-ocean modeling with and without climate restoring
    • Zhang J, Hibler W III, Steele M, Rothrock DA. 1998. Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr. 28: 191–217.
    • (1998) J. Phys. Oceanogr. , vol.28 , pp. 191-217
    • Zhang, J.1    Hibler, W.2    Steele, M.3    Rothrock, D.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.