메뉴 건너뛰기




Volumn 138, Issue , 2018, Pages 176-192

Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

Author keywords

Barley; Cotton; MOD12Q2; MODIS; Phenology; Wheat

Indexed keywords

BIOLOGY; CALIBRATION; COTTON; DATA FLOW ANALYSIS; HARVESTING; MEAN SQUARE ERROR; RADIOMETERS; SATELLITE IMAGERY; STATISTICS;

EID: 85042402897     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2018.02.011     Document Type: Article
Times cited : (65)

References (53)
  • 1
    • 2142730039 scopus 로고
    • Estimating development stages of corn from spectral data—an initial model 1
    • Badhwar, G.D., Henderson, K.E., Estimating development stages of corn from spectral data—an initial model 1. Agron. J. 73 (1981), 748–755.
    • (1981) Agron. J. , vol.73 , pp. 748-755
    • Badhwar, G.D.1    Henderson, K.E.2
  • 2
    • 85042460697 scopus 로고    scopus 로고
    • Water-sensitivity of cotton growth stages. Cotton Irrigation Management of Humid Regions, Cotton Incorporated.
    • Bauer, P., Faircloth, D., Rowland, D., Ritchie, G., 2012. Water-sensitivity of cotton growth stages. Cotton Irrigation Management of Humid Regions, Cotton Incorporated. pp. 17–20.
    • (2012) , pp. 17-20
    • Bauer, P.1    Faircloth, D.2    Rowland, D.3    Ritchie, G.4
  • 3
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton, D.K., Friedl, M.A., Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173 (2013), 74–84.
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 4
    • 70449381068 scopus 로고    scopus 로고
    • Multi-year monitoring of rice crop phenology through time series analysis of MODIS images
    • Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S., Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 30 (2009), 4643–4662.
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 4643-4662
    • Boschetti, M.1    Stroppiana, D.2    Brivio, P.A.3    Bocchi, S.4
  • 5
    • 85042417201 scopus 로고
    • Irrigation water management: irrigation scheduling. Training manual 4.
    • Brouwer, C., Prins, K., Heibloem, M., 1989. Irrigation water management: irrigation scheduling. Training manual 4.
    • (1989)
    • Brouwer, C.1    Prins, K.2    Heibloem, M.3
  • 6
    • 84865859239 scopus 로고    scopus 로고
    • Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years
    • Brown, M.E., de Beurs, K.M., Marshall, M., Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sens. Environ. 126 (2012), 174–183.
    • (2012) Remote Sens. Environ. , vol.126 , pp. 174-183
    • Brown, M.E.1    de Beurs, K.M.2    Marshall, M.3
  • 7
    • 84982161924 scopus 로고    scopus 로고
    • Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data
    • Chen, Y., Song, X., Wang, S., Huang, J., Mansaray, L.R., Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS J. Photogramm. Remote Sens. 119 (2016), 451–461.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.119 , pp. 451-461
    • Chen, Y.1    Song, X.2    Wang, S.3    Huang, J.4    Mansaray, L.R.5
  • 8
    • 84920050329 scopus 로고    scopus 로고
    • Spatio-temporal statistical methods for modelling land surface phenology
    • I.L. Hudson M.R. Keatley Springer Netherlands, Dordrecht
    • de Beurs, K.M., Henebry, G.M., Spatio-temporal statistical methods for modelling land surface phenology. Hudson, I.L., Keatley, M.R., (eds.) Phenological Research: Methods for Environmental and Climate Change Analysis, 2010, Springer, Netherlands, Dordrecht, 177–208.
    • (2010) Phenological Research: Methods for Environmental and Climate Change Analysis , pp. 177-208
    • de Beurs, K.M.1    Henebry, G.M.2
  • 9
    • 85009412418 scopus 로고    scopus 로고
    • Jönsson, P. TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring, Multitemporal Remote Sensing. Springer
    • Eklundh, L., Jönsson, P., 2016. TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring, Multitemporal Remote Sensing. Springer, pp. 177–194.
    • (2016) , pp. 177-194
    • Eklundh, L.1
  • 10
    • 38049035787 scopus 로고    scopus 로고
    • Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
    • Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 112 (2008), 576–587.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 576-587
    • Galford, G.L.1    Mustard, J.F.2    Melillo, J.3    Gendrin, A.4    Cerri, C.C.5    Cerri, C.E.P.6
  • 11
    • 77955333361 scopus 로고    scopus 로고
    • Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product
    • Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 114 (2010), 1805–1816.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1805-1816
    • Ganguly, S.1    Friedl, M.A.2    Tan, B.3    Zhang, X.4    Verma, M.5
  • 13
    • 1442315675 scopus 로고    scopus 로고
    • Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
    • Gitelson, A.A., Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161 (2004), 165–173.
    • (2004) J. Plant Physiol. , vol.161 , pp. 165-173
    • Gitelson, A.A.1
  • 14
    • 84893498266 scopus 로고    scopus 로고
    • Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production
    • Gitelson, A.A., Peng, Y., Arkebauer, T.J., Schepers, J., Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production. Remote Sens. Environ. 144 (2014), 65–72.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 65-72
    • Gitelson, A.A.1    Peng, Y.2    Arkebauer, T.J.3    Schepers, J.4
  • 16
    • 84859651516 scopus 로고    scopus 로고
    • An evaluation of MODIS 8-and 16-day composite products for monitoring maize green leaf area index
    • Guindin-Garcia, N., Gitelson, A.A., Arkebauer, T.J., Shanahan, J., Weiss, A., An evaluation of MODIS 8-and 16-day composite products for monitoring maize green leaf area index. Agric. For. Meteorol. 161 (2012), 15–25.
    • (2012) Agric. For. Meteorol. , vol.161 , pp. 15-25
    • Guindin-Garcia, N.1    Gitelson, A.A.2    Arkebauer, T.J.3    Shanahan, J.4    Weiss, A.5
  • 17
    • 0019895243 scopus 로고
    • An initial model for estimating soybean development stages from spectral data
    • Henderson, K.E., Badhwar, G.D., An initial model for estimating soybean development stages from spectral data. Remote Sens. Environ. 14 (1984), 55–63.
    • (1984) Remote Sens. Environ. , vol.14 , pp. 55-63
    • Henderson, K.E.1    Badhwar, G.D.2
  • 18
  • 19
    • 65749092507 scopus 로고    scopus 로고
    • Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information
    • Islam, A.S., Bala, S.K., Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information. GISci. Remote Sens. 45 (2008), 454–470.
    • (2008) GISci. Remote Sens. , vol.45 , pp. 454-470
    • Islam, A.S.1    Bala, S.K.2
  • 20
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M., An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 141 (2014), 116–128.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 22
    • 0017949075 scopus 로고
    • Design and testing of a generalized reduced gradient code for nonlinear programming
    • Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans. Math. Softw. (TOMS) 4 (1978), 34–50.
    • (1978) ACM Trans. Math. Softw. (TOMS) , vol.4 , pp. 34-50
    • Lasdon, L.S.1    Waren, A.D.2    Jain, A.3    Ratner, M.4
  • 23
    • 85042426665 scopus 로고    scopus 로고
    • The effects of drought and poor corn pollination on corn
    • Lauer, J., The effects of drought and poor corn pollination on corn. Field Crops 28 (2012), 493–495.
    • (2012) Field Crops , vol.28 , pp. 493-495
    • Lauer, J.1
  • 24
    • 84903526980 scopus 로고    scopus 로고
    • Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain
    • Lu, L.L., Wang, C.Z., Guo, H.D., Li, Q.T., Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain. Geocarto Int. 29 (2014), 244–255.
    • (2014) Geocarto Int. , vol.29 , pp. 244-255
    • Lu, L.L.1    Wang, C.Z.2    Guo, H.D.3    Li, Q.T.4
  • 31
    • 0003634035 scopus 로고
    • How a Soybean Plant Develops
    • Iowa State University of Science and Technology, Cooperative Extension Service
    • Ritchie, S.W., Hanway, J.J., Thompson, H.E., How a Soybean Plant Develops. 1985, Iowa State University of Science and Technology, Cooperative Extension Service.
    • (1985)
    • Ritchie, S.W.1    Hanway, J.J.2    Thompson, H.E.3
  • 32
    • 84872872459 scopus 로고    scopus 로고
    • MODIS-based corn grain yield estimation model incorporating crop phenology information
    • Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 131 (2013), 215–231.
    • (2013) Remote Sens. Environ. , vol.131 , pp. 215-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 33
    • 84897374226 scopus 로고    scopus 로고
    • Near real-time prediction of US corn yields based on time-series MODIS data
    • Sakamoto, T., Gitelson, A.A., Arkebauer, T.J., Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sens. Environ. 147 (2014), 219–231.
    • (2014) Remote Sens. Environ. , vol.147 , pp. 219-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 34
    • 81355147565 scopus 로고    scopus 로고
    • Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data
    • Sakamoto, T., Gitelson, A.A., Wardlow, B.D., Verma, S.B., Suyker, A.E., Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data. Remote Sens. Environ. 115 (2011), 3091–3101.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 3091-3101
    • Sakamoto, T.1    Gitelson, A.A.2    Wardlow, B.D.3    Verma, S.B.4    Suyker, A.E.5
  • 35
    • 79957630538 scopus 로고    scopus 로고
    • Detecting spatiotemporal changes of corn developmental stages in the US corn belt using MODIS WDRVI data
    • Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Detecting spatiotemporal changes of corn developmental stages in the US corn belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote 49 (2011), 1926–1936.
    • (2011) IEEE Trans. Geosci. Remote , vol.49 , pp. 1926-1936
    • Sakamoto, T.1    Wardlow, B.D.2    Gitelson, A.A.3
  • 38
    • 0033589516 scopus 로고    scopus 로고
    • Surface phenology and satellite sensor-derived onset of greenness: an initial comparison
    • Schwartz, M.D., Reed, B.C., Surface phenology and satellite sensor-derived onset of greenness: an initial comparison. Int. J. Remote Sens. 20 (1999), 3451–3457.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 3451-3457
    • Schwartz, M.D.1    Reed, B.C.2
  • 39
    • 0038733123 scopus 로고
    • Estimation of growth stages of wheat from spectral data
    • Sharma, T., Navalgund, R.R., Estimation of growth stages of wheat from spectral data. J. Indian Soc. Remote Sens. 17 (1989), 1–6.
    • (1989) J. Indian Soc. Remote Sens. , vol.17 , pp. 1-6
    • Sharma, T.1    Navalgund, R.R.2
  • 41
    • 85042446249 scopus 로고    scopus 로고
    • How soybeans respond to moisture stress and how yield is reduced by stress occurring at various growth stage. Michigan State University Extension. <> (last access 17.09.14).
    • Staton, M., 2012. How soybeans respond to moisture stress and how yield is reduced by stress occurring at various growth stage. Michigan State University Extension. < http://msue.anr.msu.edu/news/moisture_stress_and_high_temperature_effects_on_soybean_yields> (last access 17.09.14).
    • (2012)
    • Staton, M.1
  • 42
    • 85042419874 scopus 로고    scopus 로고
    • USDAa. Chart and Maps <> (last access 17.09.14).
    • USDA, 2017a. Chart and Maps < https://www.nass.usda.gov/Charts_and_Maps/Crops_County/index.php> (last access 17.09.14).
    • (2017)
  • 43
    • 85042407218 scopus 로고    scopus 로고
    • USDAb. CropSpace and Cropland Data Layer. <> (last access 17.09.14).
    • USDA, 2017b. CropSpace and Cropland Data Layer. < https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php> (last access 17.09.14).
    • (2017)
  • 44
    • 85042455109 scopus 로고    scopus 로고
    • USDAc. Quick Stats <> (last access 17.09.14).
    • USDA, 2017c. Quick Stats < https://quickstats.nass.usda.gov/> (last access 17.09.14).
    • (2017)
  • 45
    • 85042420513 scopus 로고    scopus 로고
    • USDAd. Survey: Crop Progress and Conditions, <> (last access 17.09.14).
    • USDA, 2017d. Survey: Crop Progress and Conditions, < https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Crop_Progress_and_Condition/index.php> (last access 17.09.14).
    • (2017)
  • 46
    • 33750796985 scopus 로고    scopus 로고
    • Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data
    • Wardlow, B.D., Kastens, J.H., Egbert, S.L., Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data. Photogramm. Eng. Remote Sens. 72 (2006), 1225–1234.
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , pp. 1225-1234
    • Wardlow, B.D.1    Kastens, J.H.2    Egbert, S.L.3
  • 47
    • 84863011405 scopus 로고    scopus 로고
    • Regional crop yield assessment by combination of a crop growth model and phenology information derived from MODIS
    • Xu, W.B., Jiang, H., Huang, J.X., Regional crop yield assessment by combination of a crop growth model and phenology information derived from MODIS. Sens. Lett. 9 (2011), 981–989.
    • (2011) Sens. Lett. , vol.9 , pp. 981-989
    • Xu, W.B.1    Jiang, H.2    Huang, J.X.3
  • 48
    • 84959318184 scopus 로고    scopus 로고
    • Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations
    • Zhang, X., Zhang, Q., Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J. Photogramm. Remote Sens. 114 (2016), 191–205.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 191-205
    • Zhang, X.1    Zhang, Q.2
  • 49
    • 34848843503 scopus 로고    scopus 로고
    • Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements
    • Zhang, X.Y., Friedl, M.A., Schaaf, C.B., Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res.-Biogeosci., 111, 2006, 14.
    • (2006) J. Geophys. Res.-Biogeosci. , vol.111 , pp. 14
    • Zhang, X.Y.1    Friedl, M.A.2    Schaaf, C.B.3
  • 51
    • 33847301474 scopus 로고    scopus 로고
    • Canopy reflectance in cotton for growth assessment and lint yield prediction
    • Zhao, D.L., Reddy, K.R., Kakani, V.G., Read, J.J., Koti, S., Canopy reflectance in cotton for growth assessment and lint yield prediction. Eur. J. Agron. 26 (2007), 335–344.
    • (2007) Eur. J. Agron. , vol.26 , pp. 335-344
    • Zhao, D.L.1    Reddy, K.R.2    Kakani, V.G.3    Read, J.J.4    Koti, S.5
  • 52
    • 85099989224 scopus 로고    scopus 로고
    • Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products
    • Zheng, Y., Wu, B.F., Zhang, M., Zeng, H.W., Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products. Sensors, 16, 2016, 21.
    • (2016) Sensors , vol.16 , pp. 21
    • Zheng, Y.1    Wu, B.F.2    Zhang, M.3    Zeng, H.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.