메뉴 건너뛰기




Volumn 190, Issue 3, 2018, Pages

Assessing and enhancing the utility of low-cost activity and location sensors for exposure studies

Author keywords

Activity sensors; Artificial Neural Network (ANN) model; Exposure; Location

Indexed keywords

NEURAL NETWORKS;

EID: 85042210179     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-018-6537-2     Document Type: Article
Times cited : (31)

References (33)
  • 1
    • 84868331072 scopus 로고    scopus 로고
    • Device-based monitoring in physical activity and public health research
    • Bassett, D. R. (2012). Device-based monitoring in physical activity and public health research. Physiological Measurement, 33, 1769–1783.
    • (2012) Physiological Measurement , vol.33 , pp. 1769-1783
    • Bassett, D.R.1
  • 2
    • 84903208735 scopus 로고    scopus 로고
    • GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina
    • COI: 1:CAS:528:DC%2BC2cXktlGrsLk%3D
    • Breen, M., Long, T., Schultz, B., Crooks, J., Breen, M., et al. (2014). GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. Journal of Exposure Science and Environmental Epidemiology, 24(4), 412–420.
    • (2014) Journal of Exposure Science and Environmental Epidemiology , vol.24 , Issue.4 , pp. 412-420
    • Breen, M.1    Long, T.2    Schultz, B.3    Crooks, J.4    Breen, M.5
  • 3
    • 23644443831 scopus 로고    scopus 로고
    • The role of GIS: coping with space (and time) in air pollution exposure assessment
    • Briggs, D. (2005). The role of GIS: coping with space (and time) in air pollution exposure assessment. Journal of Toxicology and Environmental Health Part A, 68, 1243–1261.
    • (2005) Journal of Toxicology and Environmental Health Part A , vol.68 , pp. 1243-1261
    • Briggs, D.1
  • 4
    • 79959821040 scopus 로고    scopus 로고
    • Wearable and implantable wireless sensor network solutions for healthcare monitoring
    • Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11, 5561–5595.
    • (2011) Sensors , vol.11 , pp. 5561-5595
    • Darwish, A.1    Hassanien, A.E.2
  • 9
    • 84923845770 scopus 로고    scopus 로고
    • Comparison of FitBit® ultra to ActiGraph™ GT1M for assessment of physical activity in young adults during treadmill walking
    • Gusmer, R. J., Bosch, T. A., Watkins, A. N., Ostrem, J. D., & Dengel, D. R. (2014). Comparison of FitBit® ultra to ActiGraph™ GT1M for assessment of physical activity in young adults during treadmill walking. Open Sports Medicine Journal, 8, 11–15.
    • (2014) Open Sports Medicine Journal , vol.8 , pp. 11-15
    • Gusmer, R.J.1    Bosch, T.A.2    Watkins, A.N.3    Ostrem, J.D.4    Dengel, D.R.5
  • 10
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T., & Menhaj, M. (1995). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.
    • (1995) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 12
    • 32644465428 scopus 로고    scopus 로고
    • Assessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models: their response to “what if” scenarios
    • COI: 1:CAS:528:DC%2BD28Xhs12htLo%3D
    • Karakitsios, S. P., Papaloukas, C. L., Kassomenos, P. A., & Pilidis, G. A. (2006). Assessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models: their response to “what if” scenarios. Ecological Modelling, 193, 253–270.
    • (2006) Ecological Modelling , vol.193 , pp. 253-270
    • Karakitsios, S.P.1    Papaloukas, C.L.2    Kassomenos, P.A.3    Pilidis, G.A.4
  • 14
    • 84920380727 scopus 로고    scopus 로고
    • S., French, R., Wilson, H., Hagler, G., Vasu Kilaru, Fine, P., Katz, S., Robarge, G., Renwick, D. (2015). Highlights from the Air Sensors, Air & Waste Management Association, Pittsburgh, PA
    • Kaufman, A., Williams, R. Hunt, S., French, R., Wilson, H., Hagler, G., Vasu Kilaru, Fine, P., Katz, S., Robarge, G., Renwick, D. (2015). Highlights from the Air Sensors 2014 Workshop. Em: air and waste management associations magazine for environmental managers. Air & Waste Management Association, Pittsburgh, PA, 34–39.
    • (2014) Workshop. Em: air and waste management associations magazine for environmental managers , pp. 34-39
    • Kaufman, A.1    Williams, R.H.2
  • 15
    • 0033036756 scopus 로고    scopus 로고
    • An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey
    • Kleipeis, N. E. (1999). An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey. Environmental Health Perspectives, 107, 365–374.
    • (1999) Environmental Health Perspectives , vol.107 , pp. 365-374
    • Kleipeis, N.E.1
  • 17
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6, 525–533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 19
    • 84988729464 scopus 로고    scopus 로고
    • Using global positioning system (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method
    • Nethery, E., Mallach, G., Rainham, D., Goldberg, M., & Wheeler. (2014). Using global positioning system (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method. Environmental Ηealth, 13, 33.
    • (2014) Environmental Ηealth , vol.13 , pp. 33
    • Nethery, E.1    Mallach, G.2    Rainham, D.3    Goldberg, M.4    Wheeler5
  • 20
    • 84884579234 scopus 로고    scopus 로고
    • Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry
    • Noah, J., Spierer, D. K., Gu, J., & Bronner, S. (2013). Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry. Journal of Medical Engineering and Technology, 37, 456–462.
    • (2013) Journal of Medical Engineering and Technology , vol.37 , pp. 456-462
    • Noah, J.1    Spierer, D.K.2    Gu, J.3    Bronner, S.4
  • 23
    • 63849342110 scopus 로고    scopus 로고
    • Bayesian algorithm implementation in a real time exposure assessment model on benzene with calculation of associated cancer risks
    • COI: 1:CAS:528:DC%2BD1MXisVWhu7o%3D
    • Sarigiannis, D. A., Karakitsios, S. P., Gotti, A., Papaloukas, C. L., Kassomenos, P. A., & Pilidis, G. A. (2009). Bayesian algorithm implementation in a real time exposure assessment model on benzene with calculation of associated cancer risks. Sensors, 9, 731–755.
    • (2009) Sensors , vol.9 , pp. 731-755
    • Sarigiannis, D.A.1    Karakitsios, S.P.2    Gotti, A.3    Papaloukas, C.L.4    Kassomenos, P.A.5    Pilidis, G.A.6
  • 26
    • 84869869886 scopus 로고    scopus 로고
    • Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment
    • Steinle, S., Reis, S., & Sabel, C. E. (2012). Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Science of the Total Environment, 443C(null), 184–193.
    • (2012) Science of the Total Environment , vol.443C , pp. 184-193
    • Steinle, S.1    Reis, S.2    Sabel, C.E.3
  • 28
    • 23844523425 scopus 로고    scopus 로고
    • Complementing the genome with an ‘exposome’: the outstanding challenge of environmental exposure measurement in molecular epidemiology
    • COI: 1:CAS:528:DC%2BD2MXnsl2lu7c%3D
    • Wild, C. P. (2005). Complementing the genome with an ‘exposome’: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers and Prevention, 14, 1847–1850.
    • (2005) Cancer Epidemiology, Biomarkers and Prevention , vol.14 , pp. 1847-1850
    • Wild, C.P.1
  • 29
    • 61649092274 scopus 로고    scopus 로고
    • Environmental exposure measurement in cancer epidemiology
    • COI: 1:CAS:528:DC%2BD1MXisFelt74%3D
    • Wild, C. P. (2009). Environmental exposure measurement in cancer epidemiology. Mutagenesis, 24, 117–125.
    • (2009) Mutagenesis , vol.24 , pp. 117-125
    • Wild, C.P.1
  • 30
    • 79953820184 scopus 로고    scopus 로고
    • Future research perspectives on environment and health: the requirement for a more expansive concept of translational cancer research
    • Wild, C. P. (2011). Future research perspectives on environment and health: the requirement for a more expansive concept of translational cancer research. Environmental Health, 10(Suppl 1), S15.
    • (2011) Environmental Health , vol.10 , pp. S15
    • Wild, C.P.1
  • 32
    • 84855702551 scopus 로고    scopus 로고
    • Automated time activity classification based on global positioning system (GPS) tracking data
    • COI: 1:CAS:528:DC%2BC3MXhtVSlt78%3D
    • Wu, J., Jiang, C., Houston, D., Baker, D., & Delfino, R. (2011). Automated time activity classification based on global positioning system (GPS) tracking data. Environmental Health, 10, 101.
    • (2011) Environmental Health , vol.10 , pp. 101
    • Wu, J.1    Jiang, C.2    Houston, D.3    Baker, D.4    Delfino, R.5
  • 33
    • 77957241285 scopus 로고    scopus 로고
    • A review of accelerometry-based wearable motion detectors for physical activity monitoring
    • Yang, C.-C., & Hsu, Y.-L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10, 7772–7788.
    • (2010) Sensors , vol.10 , pp. 7772-7788
    • Yang, C.-C.1    Hsu, Y.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.