-
1
-
-
85044276990
-
-
Accessed 2016-09
-
20 Questions. http://www.20q.net/. Accessed: 2016-09.
-
20 Questions
-
-
-
6
-
-
84973890960
-
Vqa: Visual question answering
-
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, Z. Lawrence, and D. Parikh. Vqa: Visual question answering. In Proc. of ICCV, 2015.
-
(2015)
Proc. of ICCV
-
-
Antol, S.1
Agrawal, A.2
Lu, J.3
Mitchell, M.4
Batra, D.5
Lawrence, Z.6
Parikh, D.7
-
9
-
-
79960392344
-
Amazon's Mechanical Turk a new source of inexpensive, yet high-quality, data?
-
M. Buhrmester, T. Kwang, and S. Gosling. Amazon's Mechanical Turk a new source of inexpensive, yet high-quality, data? Perspectives on psychological science, 6(1):3-5, 2011.
-
(2011)
Perspectives on Psychological Science
, vol.6
, Issue.1
, pp. 3-5
-
-
Buhrmester, M.1
Kwang, T.2
Gosling, S.3
-
10
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
K. Cho, B. V. Merriedie;nboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. of EMNLP. Association for Computational Linguistics, 2014.
-
(2014)
Proc. of EMNLP. Association for Computational Linguistics
-
-
Cho, K.1
Merriedienboer, B.V.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
11
-
-
85083950683
-
Evaluating prerequisite qualities for learning end-to-end dialog systems
-
J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller, A. Szlam, and J. Weston. Evaluating prerequisite qualities for learning end-to-end dialog systems. In Proc. of ICLR, 2016.
-
(2016)
Proc. of ICLR
-
-
Dodge, J.1
Gane, A.2
Zhang, X.3
Bordes, A.4
Chopra, S.5
Miller, A.6
Szlam, A.7
Weston, J.8
-
12
-
-
77649188328
-
The segmented and annotated IAPR TC-12 benchmark
-
H. Escalante, C. Hernández, J. Gonzalez, A. López-López, M. Montes, E. Morales, E. Sucar, L. Villaseñ, and M. Grubinger. The segmented and annotated IAPR TC-12 benchmark. CVIU, 2010.
-
(2010)
CVIU
-
-
Escalante, H.1
Hernández, C.2
Gonzalez, J.3
López-López, A.4
Montes, M.5
Morales, E.6
Sucar, E.7
Villaseñ, L.8
Grubinger, M.9
-
13
-
-
84925422907
-
Visual turing test for computer vision systems
-
D. Geman, S. Geman, N. Hallonquist, and L. Younes. Visual turing test for computer vision systems. Proceedings of the National Academy of Sciences, 112(12):3618-3623, 2015.
-
(2015)
Proceedings of the National Academy of Sciences
, vol.112
, Issue.12
, pp. 3618-3623
-
-
Geman, D.1
Geman, S.2
Hallonquist, N.3
Younes, L.4
-
16
-
-
84986305787
-
Natural language object retrieval
-
R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell. Natural Language Object Retrieval. Proc. of CVPR, 2016.
-
(2016)
Proc. of CVPR
-
-
Hu, R.1
Xu, H.2
Rohrbach, M.3
Feng, J.4
Saenko, K.5
Darrell, T.6
-
18
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Karpathy, A.1
Fei-Fei, L.2
-
20
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980, 2014.
-
(2014)
CoRR, abs/1412.6980
-
-
Kingma, D.P.1
Ba, J.2
-
21
-
-
84856184938
-
Computational generation of referring expressions: A survey
-
E. Krahmer and K. V. Deemter.computational generation of referring expressions: A survey.computational Linguistics, 38(1):173-218, 2012.
-
(2012)
Computational Linguistics
, vol.38
, Issue.1
, pp. 173-218
-
-
Krahmer, E.1
Deemter, K.V.2
-
22
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
23
-
-
85135155957
-
A stochastic model of computerhuman interaction for learning dialogue strategies
-
E. Levin and R. Pieraccini. A stochastic model of computerhuman interaction for learning dialogue strategies. In Eurospeech, volume 97, pages 1883-1886, 1997.
-
(1997)
Eurospeech
, vol.97
, pp. 1883-1886
-
-
Levin, E.1
Pieraccini, R.2
-
24
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and L. Zitnick. Microsoft coco: Common objects in context. In Proc of ECCV, 2014.
-
(2014)
Proc of ECCV
-
-
Lin, T.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, L.8
-
25
-
-
85072827450
-
-
arXiv preprint arXiv
-
C. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023, 2016.
-
(2016)
How NOT to Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
-
-
Liu, C.1
Lowe, R.2
Serban, I.3
Noseworthy, M.4
Charlin, L.5
Pineau, J.6
-
27
-
-
84937822746
-
A multi-world approach to question answering about real-world scenes based on uncertain input
-
M. Malinowski and M. Fritz. A multi-world approach to question answering about real-world scenes based on uncertain input. In Proc. of NIPS, pages 1682-1690, 2014.
-
(2014)
Proc. of NIPS
, pp. 1682-1690
-
-
Malinowski, M.1
Fritz, M.2
-
28
-
-
85011853174
-
-
arXiv preprint arXiv
-
J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, and K. Murphy. Generation and comprehension of unambiguous object descriptions. arXiv preprint arXiv:1511.02283, 2015.
-
(2015)
Generation and Comprehension of Unambiguous Object Descriptions
-
-
Mao, J.1
Huang, J.2
Toshev, A.3
Camburu, O.4
Yuille, A.5
Murphy, K.6
-
31
-
-
84874127849
-
A survey on metrics for the evaluation of user simulations
-
O. Pietquin and H. Hastie. A survey on metrics for the evaluation of user simulations. The knowledge engineering review, 28(01):59-73, 2013.
-
(2013)
The Knowledge Engineering Review
, vol.28
, Issue.1
, pp. 59-73
-
-
Pietquin, O.1
Hastie, H.2
-
33
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
34
-
-
33747607273
-
A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies
-
J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young. A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. The knowledge engineering review, 21(02):97-126, 2006.
-
(2006)
The Knowledge Engineering Review
, vol.21
, Issue.2
, pp. 97-126
-
-
Schatzmann, J.1
Weilhammer, K.2
Stuttle, M.3
Young, S.4
-
36
-
-
84984987697
-
-
arXiv preprint arXiv
-
I. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Hierarchical neural network generative models for movie dialogues. arXiv preprint arXiv:1507.04808, 2015.
-
(2015)
Hierarchical Neural Network Generative Models for Movie Dialogues
-
-
Serban, I.1
Sordoni, A.2
Bengio, Y.3
Courville, A.4
Pineau, J.5
-
37
-
-
84986327457
-
Where to look: Focus regions for visual question answering
-
K. Shih, S. Singh, and D. Hoiem. Where to look: Focus regions for visual question answering. In Proc. of CVPR, 2016.
-
(2016)
Proc. of CVPR
-
-
Shih, K.1
Singh, S.2
Hoiem, D.3
-
39
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In Proc of NIPS, 2014.
-
(2014)
Proc of NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.3
-
41
-
-
85018716106
-
-
arXiv preprint arXiv
-
T. Wen, M. Gasic, N. Mrksic, L. Rojas-Barahona, P. Su, S. Ultes, D. Vandyke, and S. Young. A Network-based End-to-End Trainable Task-oriented Dialogue System. arXiv preprint arXiv:1604.04562, 2016.
-
(2016)
A Network-based End-to-End Trainable Task-oriented Dialogue System
-
-
Wen, T.1
Gasic, M.2
Mrksic, N.3
Rojas-Barahona, L.4
Su, P.5
Ultes, S.6
Vandyke, D.7
Young, S.8
-
42
-
-
85083951707
-
Towards aicomplete question answering: A set of prerequisite toy tasks
-
J. Weston, A. Bordes, S. Chopra, A. Rush, B. van Merriedie;nboer, A. Joulin, and T. Mikolov. Towards aicomplete question answering: A set of prerequisite toy tasks. In Proc. of ICLR, 2016.
-
(2016)
Proc. of ICLR
-
-
Weston, J.1
Bordes, A.2
Chopra, S.3
Rush, A.4
Van Merriedienboer, B.5
Joulin, A.6
Mikolov, T.7
-
43
-
-
84939821074
-
-
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. 2015.
-
(2015)
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhutdinov, R.6
Zemel, R.7
Bengio, Y.8
-
44
-
-
84986334021
-
Stacked attention networks for image question answering
-
Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. In Proc. of CVPR, 2016.
-
(2016)
Proc. of CVPR
-
-
Yang, Z.1
He, X.2
Gao, J.3
Deng, L.4
Smola, A.5
-
45
-
-
84876682878
-
POMDPbased statistical spoken dialog systems: A review
-
S. Young, M. Gašić, B. Thomson, and J.Williams. POMDPbased statistical spoken dialog systems: A review. Proc. of the IEEE, 101(5):1160-1179, 2013.
-
(2013)
Proc. of the IEEE
, vol.101
, Issue.5
, pp. 1160-1179
-
-
Young, S.1
Gašić, M.2
Thomson, B.3
Williams, J.4
-
46
-
-
84990061297
-
Modeling context in referring expressions
-
Springer
-
L. Yu, P. Poirson, S. Yang, A. Berg, and T. Berg. Modeling context in referring expressions. In Proc. in ECCV. Springer, 2016.
-
(2016)
Proc. in ECCV
-
-
Yu, L.1
Poirson, P.2
Yang, S.3
Berg, A.4
Berg, T.5
-
47
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In Proc of NIPS, 2014.
-
(2014)
Proc of NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|