메뉴 건너뛰기




Volumn 67, Issue 2, 2018, Pages 399-410

Automated identification of sugar beet diseases using smartphones

Author keywords

classification algorithm; disease identification; erosion band signature; RGB images; sugar beet

Indexed keywords

ABIOTIC FACTOR; ACCURACY ASSESSMENT; ALGORITHM; CROP YIELD; DETECTION METHOD; DISEASE CONTROL; FUNGAL DISEASE; IDENTIFICATION METHOD; IMAGE ANALYSIS; INTEGRATED APPROACH; MOBILE PHONE; MOLECULAR ANALYSIS; SUGAR BEET; SYMPTOM;

EID: 85040809810     PISSN: 00320862     EISSN: 13653059     Source Type: Journal    
DOI: 10.1111/ppa.12741     Document Type: Article
Times cited : (48)

References (48)
  • 1
    • 50449093164 scopus 로고    scopus 로고
    • Classification of rubber tree leaf diseases using multilayer perceptron neural network
    • In, Los Alamitos, CA, USA, IEEE
    • Abdullah NE, Rahim AA, Hashim H et al., 2007. Classification of rubber tree leaf diseases using multilayer perceptron neural network. In: 5th Student Conference on Research and Development. Los Alamitos, CA, USA: IEEE, 1–6. https://doi.org/10.1109/scored.2007.4451369.
    • (2007) 5th Student Conference on Research and Development , pp. 1-6
    • Abdullah, N.E.1    Rahim, A.A.2    Hashim, H.3
  • 3
    • 79951665867 scopus 로고    scopus 로고
    • A framework for detection and classification of plant leaf and stem diseases
    • In, Los Alamitos, CA, USA, IEEE
    • Al Bashish D, Braik M, Bani-Ahmad S, 2010. A framework for detection and classification of plant leaf and stem diseases. In: International Conference on Signal and Image Processing (ICSIP). Los Alamitos, CA, USA: IEEE, 113–8. https://doi.org/10.1109/icsip.2010.5697452.
    • (2010) International Conference on Signal and Image Processing (ICSIP) , pp. 113-118
    • Al Bashish, D.1    Braik, M.2    Bani-Ahmad, S.3
  • 4
    • 77951587524 scopus 로고    scopus 로고
    • An image recognition system for crop disease identification of paddy fields in Sri Lanka
    • In, Los Alamitos, CA, USA, IEEE
    • Anthonys G, Wickramarachchi N, 2009. An image recognition system for crop disease identification of paddy fields in Sri Lanka. In: International Conference on Industrial and Information Systems (ICIIS). Los Alamitos, CA, USA: IEEE, 403–7. https://doi.org/10.1109/iciinfs.2009.5429828.
    • (2009) International Conference on Industrial and Information Systems (ICIIS) , pp. 403-407
    • Anthonys, G.1    Wickramarachchi, N.2
  • 5
    • 84958116432 scopus 로고    scopus 로고
    • On developing and enhancing plant-level disease rating systems in real fields
    • Atoum Y, Afridi MJ, Liu X et al., 2016. On developing and enhancing plant-level disease rating systems in real fields. Pattern Recognition 53, 287–99.
    • (2016) Pattern Recognition , vol.53 , pp. 287-299
    • Atoum, Y.1    Afridi, M.J.2    Liu, X.3
  • 6
    • 84910626128 scopus 로고    scopus 로고
    • An automatic method to detect and measure leaf disease symptoms using digital image processing
    • Barbedo JCA, 2014. An automatic method to detect and measure leaf disease symptoms using digital image processing. Plant Disease 98, 1709–16.
    • (2014) Plant Disease , vol.98 , pp. 1709-1716
    • Barbedo, J.C.A.1
  • 7
    • 84958554797 scopus 로고    scopus 로고
    • A review on the main challenges in automatic plant disease identification based on visible range images
    • Barbedo JCA, 2016. A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering 144, 52–60.
    • (2016) Biosystems Engineering , vol.144 , pp. 52-60
    • Barbedo, J.C.A.1
  • 9
    • 79955798770 scopus 로고    scopus 로고
    • The potential of automatic methods of classification to identify leaf diseases from multispectral images
    • Bauer SD, Korc F, Förstner W, 2011. The potential of automatic methods of classification to identify leaf diseases from multispectral images. Precision Agriculture 12, 361–77.
    • (2011) Precision Agriculture , vol.12 , pp. 361-377
    • Bauer, S.D.1    Korc, F.2    Förstner, W.3
  • 10
    • 85028199288 scopus 로고    scopus 로고
    • A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
    • Behmann J, Mahlein AK, Rumpf T et al., 2015. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture 16, 239–60.
    • (2015) Precision Agriculture , vol.16 , pp. 239-260
    • Behmann, J.1    Mahlein, A.K.2    Rumpf, T.3
  • 11
    • 77950942373 scopus 로고    scopus 로고
    • Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
    • Bock CH, Poole GH, Parker PE et al., 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences 29, 59–107.
    • (2010) Critical Reviews in Plant Sciences , vol.29 , pp. 59-107
    • Bock, C.H.1    Poole, G.H.2    Parker, P.E.3
  • 12
    • 57449114907 scopus 로고    scopus 로고
    • An image-processing based algorithm to automatically identify plant disease visual symptoms
    • Camargo A, Smith JS, 2009. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystems Engineering 102, 9–21.
    • (2009) Biosystems Engineering , vol.102 , pp. 9-21
    • Camargo, A.1    Smith, J.S.2
  • 14
    • 77958460469 scopus 로고    scopus 로고
    • Image processing methods for quantitatively detecting soybean rust from multispectral images
    • Cui D, Zhang Q, Li M et al., 2010. Image processing methods for quantitatively detecting soybean rust from multispectral images. Biosystems Engineering 107, 186–93.
    • (2010) Biosystems Engineering , vol.107 , pp. 186-193
    • Cui, D.1    Zhang, Q.2    Li, M.3
  • 15
    • 84855850003 scopus 로고    scopus 로고
    • The use of digital image analysis and real-time PCR fine-tunes bioassays for quantification of cercospora leaf spot disease in sugar beet breeding
    • De Coninck BMA, Amand O, Delauré SL et al., 2012. The use of digital image analysis and real-time PCR fine-tunes bioassays for quantification of cercospora leaf spot disease in sugar beet breeding. Plant Pathology 61, 76–84.
    • (2012) Plant Pathology , vol.61 , pp. 76-84
    • De Coninck, B.M.A.1    Amand, O.2    Delauré, S.L.3
  • 16
    • 84929464198 scopus 로고    scopus 로고
    • First report of bacterial blight of sugar beet caused by Pseudomonas syringae pv. aptata in Georgia, USA
    • Dutta B, Ingram T, Gitaitis RD et al., 2014. First report of bacterial blight of sugar beet caused by Pseudomonas syringae pv. aptata in Georgia, USA. Plant Disease 98, 1423.
    • (2014) Plant Disease , vol.98 , pp. 1423
    • Dutta, B.1    Ingram, T.2    Gitaitis, R.D.3
  • 18
    • 0003626435 scopus 로고    scopus 로고
    • 3rd edn, Upper Saddle River, NJ, USA, Pearson Prentice Hall
    • Gonzales R, Woods R, 2008. Digital Image Processing. 3rd edn. Upper Saddle River, NJ, USA: Pearson Prentice Hall.
    • (2008) Digital Image Processing
    • Gonzales, R.1    Woods, R.2
  • 20
    • 33947614142 scopus 로고    scopus 로고
    • Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features
    • Huang KY, 2007. Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture 57, 3–11.
    • (2007) Computers and Electronics in Agriculture , vol.57 , pp. 3-11
    • Huang, K.Y.1
  • 22
    • 77957952975 scopus 로고    scopus 로고
    • Support vector machine for recognition of cucumber leaf diseases
    • In, Piscataway, NJ, USA, IEEE Press
    • Jian Z, Wei Z, 2010. Support vector machine for recognition of cucumber leaf diseases. In: 2nd International Conference on Advanced Computer Control, Vol. 5. Piscataway, NJ, USA: IEEE Press, 264–6.
    • (2010) 2nd International Conference on Advanced Computer Control , vol.5 , pp. 264-266
    • Jian, Z.1    Wei, Z.2
  • 23
  • 25
    • 0042856825 scopus 로고    scopus 로고
    • Environmental situation and yield performance of the sugar beet crop in Germany: heading for sustainable development
    • Maerlaender B, Hoffmann C, Koch HJ et al., 2003. Environmental situation and yield performance of the sugar beet crop in Germany: heading for sustainable development. Journal of Agronomy & Crop Science 189, 201–26.
    • (2003) Journal of Agronomy & Crop Science , vol.189 , pp. 201-226
    • Maerlaender, B.1    Hoffmann, C.2    Koch, H.J.3
  • 26
    • 84856610548 scopus 로고    scopus 로고
    • Recent advances in sensing plant diseases for precision crop protection
    • Mahlein AK, Oerke EC, Steiner U et al., 2012. Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology 133, 197–209.
    • (2012) European Journal of Plant Pathology , vol.133 , pp. 197-209
    • Mahlein, A.K.1    Oerke, E.C.2    Steiner, U.3
  • 27
    • 77955959088 scopus 로고    scopus 로고
    • Face recognition with Local Binary Patterns, Spatial Pyramid Histograms and Naive Bayes Nearest Neighbor Classification
    • In, Los Alamitos, CA, USA, IEEE
    • Maturana D, Mery D, Soto A, 2009. Face recognition with Local Binary Patterns, Spatial Pyramid Histograms and Naive Bayes Nearest Neighbor Classification. In: 2009 International Conference of the Chilean Computer Science Society (SCCC-09). Los Alamitos, CA, USA: IEEE, 125–32. https://doi.org/10.1109/sccc.2009.21.
    • (2009) 2009 International Conference of the Chilean Computer Science Society (SCCC-09) , pp. 125-132
    • Maturana, D.1    Mery, D.2    Soto, A.3
  • 30
    • 0000661517 scopus 로고
    • Accuracy, intrarater repeatability, and interrater reliability of disease assessment systems
    • Nutter FW Jr, Gleason ML, Jenco JH, Christians NL, 1993. Accuracy, intrarater repeatability, and interrater reliability of disease assessment systems. Phytopathology 83, 806–12.
    • (1993) Phytopathology , vol.83 , pp. 806-812
    • Nutter, F.W.1    Gleason, M.L.2    Jenco, J.H.3    Christians, N.L.4
  • 34
    • 34748829114 scopus 로고    scopus 로고
    • CERCBET3 a forecaster for epidemic development of Cercospora beticola
    • Racca P, Joerg E, 2007. CERCBET3 a forecaster for epidemic development of Cercospora beticola. EPPO Bulletin 37, 344–9.
    • (2007) EPPO Bulletin , vol.37 , pp. 344-349
    • Racca, P.1    Joerg, E.2
  • 35
    • 80054924635 scopus 로고    scopus 로고
    • Model validation and use of Geographic Information Systems in crop protection warning service
    • In, Oerke EC, Gerhards R, Menz G, Sikora RA, eds., Dordrecht, Netherlands, Springer
    • Racca P, Zeuner T, Jung J et al., 2010. Model validation and use of Geographic Information Systems in crop protection warning service. In: Oerke EC, Gerhards R, Menz G, Sikora RA, eds. Precision Crop Protection – The Challenge and Use of Heterogeneity. Dordrecht, Netherlands: Springer, 259–76.
    • (2010) Precision Crop Protection – The Challenge and Use of Heterogeneity , pp. 259-276
    • Racca, P.1    Zeuner, T.2    Jung, J.3
  • 37
    • 0008596090 scopus 로고
    • Techniques for evaluating sugarbeet for resistance to Cercospora beticola in the field
    • Ruppel EG, Gaskill J, 1971. Techniques for evaluating sugarbeet for resistance to Cercospora beticola in the field. Journal of Sugar Beet Research 16, 384–9.
    • (1971) Journal of Sugar Beet Research , vol.16 , pp. 384-389
    • Ruppel, E.G.1    Gaskill, J.2
  • 38
    • 0042233698 scopus 로고    scopus 로고
    • Fall armyworm damaged maize plant identification using digital images
    • Sena DG, Pinto FAC, Queiroz DM et al., 2003. Fall armyworm damaged maize plant identification using digital images. Biosystems Engineering 85, 449–54.
    • (2003) Biosystems Engineering , vol.85 , pp. 449-454
    • Sena, D.G.1    Pinto, F.A.C.2    Queiroz, D.M.3
  • 41
    • 84878463117 scopus 로고    scopus 로고
    • Disease variation and chemical control of Ramularia leaf spot in sugar beet
    • Thach T, Munk L, Hansen AL et al., 2013. Disease variation and chemical control of Ramularia leaf spot in sugar beet. Crop Protection 51, 68–76.
    • (2013) Crop Protection , vol.51 , pp. 68-76
    • Thach, T.1    Munk, L.2    Hansen, A.L.3
  • 43
    • 0037290695 scopus 로고    scopus 로고
    • Comparison of two disease assessment methods for assessing cercospora leaf spot in sugar beet
    • Vereijssen J, Schneider JHM, Termorshuizen AJ, Jeger MJ, 2003. Comparison of two disease assessment methods for assessing cercospora leaf spot in sugar beet. Crop Protection 22, 201–9.
    • (2003) Crop Protection , vol.22 , pp. 201-209
    • Vereijssen, J.1    Schneider, J.H.M.2    Termorshuizen, A.J.3    Jeger, M.J.4
  • 44
    • 2542578704 scopus 로고    scopus 로고
    • Pathogen profile: sugarbeet leaf spot disease (Cercospora beticola Sacc.)
    • Weiland J, Koch G, 2004. Pathogen profile: sugarbeet leaf spot disease (Cercospora beticola Sacc.). Molecular Plant Pathology 5, 157–66.
    • (2004) Molecular Plant Pathology , vol.5 , pp. 157-166
    • Weiland, J.1    Koch, G.2
  • 45
    • 0036209933 scopus 로고    scopus 로고
    • The IPM sugar beet model
    • Wolf P, Verreet J, 2002. The IPM sugar beet model. Plant Disease 86, 336–44.
    • (2002) Plant Disease , vol.86 , pp. 336-344
    • Wolf, P.1    Verreet, J.2
  • 46
    • 52049103553 scopus 로고    scopus 로고
    • The recognition of cucumber disease based on image processing and support vector machine
    • In, Los Alamitos, CA, USA, IEEE
    • Youwen T, Tianlai L, Yan N, 2008. The recognition of cucumber disease based on image processing and support vector machine. In: Congress on Image and Signal Processing (CISP ‘08). Los Alamitos, CA, USA: IEEE, 262–7. https://doi.org/10.1109/cisp.2008.29.
    • (2008) Congress on Image and Signal Processing (CISP ‘08) , pp. 262-267
    • Youwen, T.1    Tianlai, L.2    Yan, N.3
  • 48
    • 84932619439 scopus 로고    scopus 로고
    • Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
    • Zhou R, Kaneko S, Tanaka F, Kayamori M, Shimizu M, 2015. Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition. Computers and Electronics in Agriculture 116, 65–79.
    • (2015) Computers and Electronics in Agriculture , vol.116 , pp. 65-79
    • Zhou, R.1    Kaneko, S.2    Tanaka, F.3    Kayamori, M.4    Shimizu, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.